271 |
Evaluation of improved housekeeping compliance and the use of microfibre cleaning cloths on reducing environmental reservoirs of antibiotic resistant organisms and Clostridium difficile in health care facilitiesTrajtman, Adriana 08 April 2010 (has links)
Contaminated environmental surfaces can be a means of transmission of Clostridium difficile spores in health-care facilities.
The study objectives are to assess the value of the UV marker as an audit tool for improving housekeeping compliance and to compare microfiber and cotton cloths for removal of Clostridium difficile spores from surfaces.
A lotion visible only under short-wave UV light (UV Marker) was applied to different surfaces within the patient’s washrooms on consecutive week days, over a twenty-four week period. The Study included three Arms: Arm one received feedback for 24 weeks , Arm two received feedback for the first 12 weeks and Arm three was given feedback for the last 12 weeks based on UV Marker results. The visual audit resulted in a cleaning compliance of 55%; whereas, feedback with the UV Marker led to a housekeeping compliance of 90%.
The UV marker is a better audit tool than visual inspection for improving cleaning compliance of housekeeping staff. The use of microfiber cloths may enhance efficiency of microbial removal during surface cleaning.
|
272 |
Porphyrin complexation: an approach in porphyria therapyAkinwumi, Bolanle C. 20 August 2012 (has links)
Porphyria is a rare metabolic disease which occurs as a result of accumulation of endogenous porphyrins due to specific enzyme deficiency in the biosynthetic pathway of heme. Chloroquine is currently used in the treatment of cutaneous porphyria, although its mechanism of action is not yet well understood. It is believed that chloroquine works in porphyria by forming complexes with excess porphyrin molecules and thus enhancing their elimination from the body. Previous reports of porphyrin-chloroquine complexes have been done mostly in aqueous models. In this study, UV/Visible optical absorbance difference spectroscopy was used to study the complexation of protoporphyrin IX with chloroquine and a range of acceptor molecules in hydrophobic models. The results show that chloroquine, mefloquine, amodiaquine, quinacrine, and pyronaridine formed relatively stronger complexes compared to other molecules such as quinine, duroquinone and caffeine. Therefore, relative to chloroquine, some of the molecules with comparable or greater binding affinity to protoporphyrin IX might also be useful in the treatment of porphyria.
|
273 |
GTP-Cyclohydrolase function in parasitic nematode developmentBaker, Rachael Helen January 2012 (has links)
Parasitic nematodes of grazing livestock represent an increasing economic and welfare problem for British agriculture. By investigating specific life-cycle stages of these parasites, it may be possible to identify key molecules or pathways that are required for the survival of the worms, and thus exploit these for future control strategies. It has been shown previously that the third larval stages (L3) of the ovine parasitic nematode Teladorsagia circumcincta produce high levels of transcript for the enzyme GTP-Cyclohydrolase relative to later developmental stages. As the ratelimiting factor in the production of tetrahydrobiopterin, GTP-Cyclohydrolase is required for a number of different biochemical pathways, including those involved in the production of serotonin and melanin. As the L3 do not feed, it can be hypothesised that, if finite resources are being used in the production of transcript encoding this enzyme, then it may be important for survival. In this thesis, a number of approaches were taken to explore the function of GTPCyclohydrolase in the life-cycle development of T. circumcincta. The closely related parasite, Dictyocaulus viviparus, was used as a model organism to explore the role of GTP-Cyclohydrolase and serotonin production with regards to larval arrest, or hypobiosis. This process occurs readily under experimental conditions in D. viviparus, which is not possible with T. circumcincta. Quantitative PCR was used to examine GTP-Cyclohydrolase transcript levels in two different strains of D. viviparus, one that enters larval arrest when exposed to cold conditions and one that does not. No differences were observed between the two strains suggesting that GTP-Cyclohydrolase was unlikely to be involved in hypobiosis. The model nematode, Caenorhabditis elegans, was used to perform functional complementation experiments to assess the role of GTP-Cyclohydrolase in the cuticle, as it has been shown previously that C. elegans GTP-Cyclohydrolase mutants have a ‘leaky cuticle’ and are killed by lower doses of anthelmintics and bleach than the wild-type worms. The T. circumcincta gene for GTP-Cyclohydrolase was able to restore cuticular integrity of C. elegans GTP-Cyclohydrolase-deletion mutants, suggesting that the role played by the protein in both species is similar. In vitro inhibition experiments using a chemical inhibitor of GTP-Cyclohydrolase showed that T. circumcincta larval development was disrupted in the presence of the inhibitor. It was also shown that T. circumcincta L3 that were exposed to sunlight produced melanin, suggesting that the levels of GTP-Cyclohydrolase observed in the preparasitic stages of T. circumcincta may be required for the synthesis of melanin. Together, these data suggest that GTP-Cyclohydrolase is required by the preparasitic stages to survive on pasture. Ultraviolet radiation has been shown previously to be harmful to T. circumcincta L3, so if the melanin production provides protection from this, then it would be crucial for the survival of the pre-parasitic stages.
|
274 |
FABRICATION AND CHARACTERIZATION OF DETERMINISTIC MICROASPERITIES ON THRUST SURFACESKortikar, Sarang Narayan 01 January 2004 (has links)
The deterministic microasperities play a vital role in reducing the coefficient of friction and wear of thrust surfaces and improve the tribological properties of the surfaces. Deterministic microasperities have a specific pattern in terms of size, shape and spacing. These specified geometries are controllable and repeatable. The microasperities are micron scaled asperities and cavities on a surface that form the surface roughness. The present thesis shows the detailed process to fabricate the deterministic microasperities on thrust surfaces, i.e. stainless substrate, using micro-fabrication processes such as lapping and ultra-violet photolithography in combination with an electroplating (nickel) process. A Novel alignment technique is used to align the photomask with the substrate to get repeatable and aligned patterns on the thrust surface. Deterministic microasperities are characterized by using precision instruments such as an Optical profilometer, Scanning Electron Microscope (SEM) and Optical microscope to study the various surface parameters such as Average roughness (Ra), Root mean square value (rms) and Peak value (PV) of the thrust surface.
|
275 |
Textil fotokatalys : biomimetik med textila processerLundberg, Malin, Blomqvist, Maja January 2015 (has links)
Fotokatalys är en reaktion som kan användas vid rening av avloppsvatten vilket är viktigt då avloppsvatten är en källa till smittspridning, till exempel kan bakterien E. coli spridas genom otillräckligt renat vatten. Titandioxid i kombination med UV- strålning skapar en fotokatalytisk reaktion i vatten som bryter ner mikroorganismer med hjälp av de fria radikaler som bildas. Syftet med projektet är att med hjälp av tre appliceringsmetoder fästa titandioxid på en termoplastisk textil. Härigenom skapas en vattenrenande textil. Syftet är också att öka den effektiva ytan jämfört med tidigare exempel i litteraturen för att på sätt få högre effektivitet. Ett tema för projektet är alltså att skapa en lämplig textil konstruktion för textil fotokatalys i ett modellsystem. Under den här kandidatuppsatsen, som har genomförts på Textilhögskolan i Borås, har ålgräsängar använts som inspirationskälla under skapandet av en textil konstruktion. Ålgräs (Zostera Marina) växer på havsbottnar och utgörs av långa vajande stjälkar. Ålgräs är enhjärtbladiga växter och som sådana klorofyllbärande. De kan sålunda fånga solljus. Ålgräs växer i ängar och vid framtagning av konceptet till den tänka strukturen mimikera strukturen hos dessa ålgräsängar. Härigenom uppnås en större effektiv yta och en struktur som syftar till att bättre ta om hand det infallande solljuset än tidigare konstruktioner. Tuftning som sällan används för tekniska textilier kommer brukas för denna biometriska struktur. Tre appliceringsmetoder för titandioxid har studerats vidhäftning med hjälp av TPU film, användning av UV-härdande akrylat och insmältning. Insmältning undersökte huruvida det gick att smälta fast titandioxid i pulverform direkt på garnet. Materialva- let i detta modellsystem var polypropen, valet av polypropen grundar sig i att det är en termoplast och som sådan är smältbar och flyter i vatten, likt ålgräs. Dessutom är den hydrofob, billig och frigör inga hälsoskadliga ämnen vid användning. Det konstruera- des en produktionslinje för att producera metervara av titandioxidbelagt polypropen garn genom insmältning. Detta var ett försök till att effektivisera och ta fram nytän- kande appliceringsmetoder. Resultatet blev en produktionslinje som kunde producera metervara av titandioxidbelagt garn genom insmältning. Fotokatalytisk aktivitet indikerades med hjälp av metylenblå. Av testresultaten kunde det konstateras att när titandioxid applicerats på garn med hjälp av en TPU film erhölls bäst fotokatalytiska egenskaper. Beläggning med hjälp av UV-härdande akrylat funge- rar också men det befanns vara något sämre. En bakterieanalys genomfördes för att ytterligare säkerhetsställa effekten av appliceringsmetoderna. Under testet användes vatten från Viskan för att resultatet skulle återspegla en verklighetsnära situation. Re- sultaten visade även här att TPU filmen var den bästa appliceringsmetoden. Bakterie- halten i vatten behandlat med fotokatalytisk TPU applicerad titandioxid kunde dras ner till tusenfalt drickbara nivåer. Analyser av SEM-bilder gav en ökad förståelse för varför de olika beläggningsmetoderna fungerade så som de gjorde. Då både den foto- katalytiska analysen och bakterieanalysen indikerade på att en reaktion mellan titandi- oxiden och UV-ljuset uppstått med önskad effekt.
|
276 |
Investigation of endocrine disrupting compounds in membrane bioreactor and UV processesYang, Wenbo 12 January 2010 (has links)
Endocrine disrupting compounds (EDCs) in the environment have recently emerged as a major issue in Canada and around the globe. The primary objective of this thesis was to investigate the fate of EDCs in two wastewater treatment processes, membrane bioreactors (MBRs) and ultraviolet (UV) disinfection. Two submerged MBR systems using hollow fiber membranes from two membrane manufacturers were tested. The results from a bench-scale and a pilot scale MBR for the treatment of swine wastewater with high concentration of EDCs showed that over 94% of the estrogenic activity (EA) in the influent was reduced through the MBR process. Biological degradation was the dominant removal mechanism for the removal of EDCs in MBRs. Over 85% of the influent EA was reduced by biodegradation through the MBR process. The other MBR system was built to study the removal mechanisms of two estrogens in a hybrid MBR with the addition of powdered activated carbon (PAC). The effects of PAC dosing on MBR overall performance was studied as well. It was found that PAC dosing could increase the removal rates of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) by 3.4% and 15.8%, respectively and result in a slower rate of trans-membrane pressure (TMP) increase during MBR operation, which could significantly reduce the operating cost for membrane cleaning and/or replacement. The operating cost for PAC dosing could be offset by the benefit achieved from reducing the cost for membrane maintenance. The slower rate of TMP increase in the PAC-MBR was associated with the lower concentrations of soluble extracellular polymeric substances and colloidal organic compounds in the PAC-MBR sludge.
The degradation kinetics of three estrogens, estrone (E1), E2, and EE2 in de-ionized water by UV irradiation was studied. The experimental results showed both the apparent concentrations and overall EA of all three investigated estrogens in water decreased with direct UV irradiation. To further study the impact of UV on the overall EA of wastewater, the EA of pre-UV and post-UV samples from five wastewater treatment plants were measured in both liquid and solid phase by Yeast Estrogen Screen assay. It was found that the EA of wastewater decreased after UV disinfection in three of the investigated plants whereas it increased in the other two plants. This observation needs to be further studied because it might have significant impacts on the application of UV systems for wastewater disinfection.
|
277 |
Evaluation of improved housekeeping compliance and the use of microfibre cleaning cloths on reducing environmental reservoirs of antibiotic resistant organisms and Clostridium difficile in health care facilitiesTrajtman, Adriana 08 April 2010 (has links)
Contaminated environmental surfaces can be a means of transmission of Clostridium difficile spores in health-care facilities.
The study objectives are to assess the value of the UV marker as an audit tool for improving housekeeping compliance and to compare microfiber and cotton cloths for removal of Clostridium difficile spores from surfaces.
A lotion visible only under short-wave UV light (UV Marker) was applied to different surfaces within the patient’s washrooms on consecutive week days, over a twenty-four week period. The Study included three Arms: Arm one received feedback for 24 weeks , Arm two received feedback for the first 12 weeks and Arm three was given feedback for the last 12 weeks based on UV Marker results. The visual audit resulted in a cleaning compliance of 55%; whereas, feedback with the UV Marker led to a housekeeping compliance of 90%.
The UV marker is a better audit tool than visual inspection for improving cleaning compliance of housekeeping staff. The use of microfiber cloths may enhance efficiency of microbial removal during surface cleaning.
|
278 |
Porphyrin complexation: an approach in porphyria therapyAkinwumi, Bolanle C. 20 August 2012 (has links)
Porphyria is a rare metabolic disease which occurs as a result of accumulation of endogenous porphyrins due to specific enzyme deficiency in the biosynthetic pathway of heme. Chloroquine is currently used in the treatment of cutaneous porphyria, although its mechanism of action is not yet well understood. It is believed that chloroquine works in porphyria by forming complexes with excess porphyrin molecules and thus enhancing their elimination from the body. Previous reports of porphyrin-chloroquine complexes have been done mostly in aqueous models. In this study, UV/Visible optical absorbance difference spectroscopy was used to study the complexation of protoporphyrin IX with chloroquine and a range of acceptor molecules in hydrophobic models. The results show that chloroquine, mefloquine, amodiaquine, quinacrine, and pyronaridine formed relatively stronger complexes compared to other molecules such as quinine, duroquinone and caffeine. Therefore, relative to chloroquine, some of the molecules with comparable or greater binding affinity to protoporphyrin IX might also be useful in the treatment of porphyria.
|
279 |
Investigating erythemal UV exposure and vitamin D production in the urban canyonMcKinley, Alex R. January 2008 (has links)
Exposure to ultraviolet radiation (UV) results in both damaging and beneficial health outcomes. Excessive UV exposure has been linked to many skin and eye problems, but moderate exposure induces vitamin D production. It has been reported that humans receive 90-95% of their vitamin D from production that starts after UV exposure. Although it is possible to acquire vitamin D through dietary supplementation, the average person receives very little in this manner. Therefore, since most people acquire their vitamin D from synthesis after exposure to UV from sunlight, it is very important to understand the different environments in which people encounter UV.
This project measured UV radiation and in-vitro vitamin D production in the urban canyon and at a nearby suburban location. The urban canyon is an environment consisting of tall buildings and tropospheric air pollution, which have an attenuating effect on UV. Typically, UV measurements are collected in areas outside the urban canyon, meaning that at times studies and public recommendations do not accurately represent the amount of UV reaching street-level in highly urbanized areas. Understanding of UV exposure in urban canyons becomes increasingly important as the number of people working and living in large cities steadily increases worldwide.
This study was conducted in the central business district (CBD) of Brisbane, Australia, which models the urban canyons of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers, meaning that most areas only see a small amount of direct sunlight each day. During the winter of 2007 measurements of UV radiation and in-vitro vitamin D production were collected in the CBD and at a suburban site approximately 2.5km outside the CBD. Air pollution data was obtained from a central CBD measurement site. Data analysis showed that urban canyon measurements of both UV radiation and in-vitro vitamin D production were significantly lower than those collected at the suburban site. These results will aid both future researchers and policy makers in better understanding human UV exposure in Brisbane’s CBD and other urban canyons around the world.
|
280 |
Synthesis, characterisation, and activity of novel TiO2-based photocatalysts for organic pollutant photodestruction under UV and visible-light irradiationHudaya, Tedi, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Titania-based photocatalysts have been extensively studied for the oxidative photodestruction of organic pollutants in wastewaters, releasing non-toxic substances such as CO2, HCl, and water. However, commercial exploitation of this process is limited by the fact that titania is only active under UV irradiation (wavelength below about 388 nm), which is only less than 5% of solar light energy. Sol-gel synthesised catalyst specimens were characterised to determine the correlation between preparation conditions on morphology (XRD, SEM), optical (bandgap energy level) and physicochemical properties (BET surface area, pore volume, acid site density, acid site strength and type) of the photocatalysts. These spesific properties would then be linked to their photoactivity using aqueous aliphatic and aromatic model pollutants. This study has demonstrated that sol-gel synthesised doped titania photocatalysts, especially Pt/TiO2, may be used to effectively degrade non-volatile acids (DL-malic acid, dichloroacetic acid, and p-hydroxybenzoic acid) under visible light and UV irradiation with significant photoactivity suitable for the solar light application of photocatalytic wastewater treatment. A significant drop in band-gap energy was found for all titania sol-gel catalysts doped with Pt, Co, and Ce with values between 1.41 to 1.78 eV. The BET areas of the photocatalysts were also higher (65-117 m2/g) than that of Degussa P25 (50 m2/g). The visible-light photomineralisation of the three pollutants with Pt-TiO2 specimen were further extended to evaluate the effects of major variables in a bubble-column photoreactor on the photodegradation activities. Those major variables were lamp intensity, oxygen concentration, initial pH, catalyst dosage, and inital pollutant concentration. All the three pollutants seemed to follow the Langmuir-Hinselwood model with dual adsorption sites which implicated a bimolecular surface rate-limiting step probably between the adsorbed organic substrate and a surface hydroxyl (or peroxy) radical. A study of the CeyCoxTi(1-x)O3+d perovskite was conducted to investigate the influence of metal composition and pH on the intrinsic optophysical attributes as well as p-hydroxybenzoic acid degradation under UV irradiation. The perovskite UV photoactivities were lower than that of pure TiO2 likely due to excessive loading (metal content) creating new oxide phases act as electron-hole recombination center, regardless better physicochemical attributes of some of the perovskite samples. The role of aging time and calcination temperature on the sol-gel synthesised TiO2 was also explored. Higher calcination temperature (from 250 to 700 0C) resulted in TiO2 photocatalysts with better crystallinity, which is important for OH group formation as active sites for photodegradation. Despite of some advantages from higher temperature preparation, some detrimental effects such as decreased acidity attributes, surface area, and pore volume were also observed. The significant red-shift of sol-gel synthesized TiO2 into visible light, especially for 250 0C specimen since 600 or 700 0C had extremely low activities, has promising implications that this specimen might be used for solar application to substitute Pt-doped TiO2 in order to produce a more cost effective photocatalyst. Aging period (1 to 14 days) did not have any discernible effect on the band-gap value and acid-site density. Even so, the highest acid site strength was obtained with an aging time of 10 days. From the overall perspective, aging time longer than 3 days did not bring noticeable benefits to both catalyst attributes and photoactivities.
|
Page generated in 0.03 seconds