• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imagerie quantitative du dépôt d’aérosols dans les voies aériennes du petit animal par résonance magnétique / Quantitative imaging of aerosol deposition in small animal airways using magnetic resonance imaging

Wang, Hongchen 13 March 2015 (has links)
Cette thèse s’inscrit dans le projet OxHelease (ANR-TecSan 2011) qui vise à étudier l’impact de l’inhalation de l’hélium-oxygène sur la ventilation, l’oxygénation sanguine, le dépôt d’aérosol dans l’asthme et l’emphysème. Dans ce cadre, ce travail de thèse a consisté à mettre au point des méthodes d’imagerie par résonance magnétique pour quantifier les dépôts d’aérosols chez le rat. L’administration de médicaments par voie inhalée est une approche possible pour le traitement des maladies pulmonaires comme les broncho-pneumopathies chroniques obstructives. C’est également une voie intéressante pour l’administration systémique de médicaments en raison d’un transfert potentiellement rapide dans le sang. Néanmoins, le transport et les dépôts de particules dans les poumons sont complexes et difficiles à prédire, à cause de la dépendance de nombreux paramètres, tels que le protocole d’administration, la morphologie des voies aériennes, le profil respiratoire, ou encore les propriétés aérodynamiques du gaz et des particules. Pour mieux maîtriser cette voie d’administration de médicaments, des outils d’imagerie peuvent être utilisés. L’IRM est moins conventionnelle que d’autres approches pour caractériser le poumon, mais les progrès techniques et les multiples mécanismes de contraste exploitables peuvent être mis à profit pour ce faire.Pour obtenir un signal exploitable du parenchyme pulmonaire chez le rat, une séquence IRM à temps d’écho court a été mise en place sur un système clinique à 1,5 T. Cette technique a été combinée à une administration de courte durée d’un aérosol de chélate de Gadolinium en respiration spontanée. Le mécanisme de contraste principal utilisé est la modification du temps de relaxation longitudinale induisant un rehaussement du signal et qui permet d’estimer la concentration locale avec une résolution spatiale de (0,5 mm)3 et temporelle de 7,5 min permettant également de suivre l’élimination pulmonaire au cours du temps. La sensibilité de cette approche (seuil de détection de l’ordre de 20 µM) a été déterminée et pour cela des méthodes d’analyses spécifiques globales et locales incluant des segmentations, des analyses de distributions et des statistiques ont été développées. Après validation sur des rats sains, pour lesquels un rehaussement moyen de 50%, une distribution homogène de dépôt et une dose totale relativement faible (~1 µmol/kg de poids corporel) ont été observés, cette modalité d’imagerie a pu être appliquée chez des modèles asthmatiques et emphysémateux qui ont montrés des différences significatives de certains paramètres comme l’homogénéité des dépôts ou la cinétique d’élimination. Par ailleurs, des résultats préliminaires de mise en place d’une étude multimodale, où l’IRM est comparée à la tomodensitométrie et à l’imagerie nucléaire sur les mêmes animaux a été effectuée. Enfin, dans une optique d’évaluation de la faisabilité d’approches quantitatives par IRM, un système double noyaux proton-fluor pour déterminer la sensibilité de l’imagerie de gaz et d’aérosols fluorés a été implémenté et testé sur des rats.Ces approches par IRM ouvrent des perspectives pour permettre la caractérisation in vivo des dépôts de particules inhalées dans des conditions d’administration variées et leur sensibilité suggère un transfert potentiel chez l’homme / This PhD thesis is part of the OxHelease project (ANR-TecSan 2011) that aims to study the impact of helium-oxygen inhalation on ventilation, blood oxygenation, and aerosol deposition in chronic obstructive respiratory diseases, such as asthma and emphysema. In this context, this work consisted of developing magnetic resonance imaging methods to quantify aerosol deposition in rat lung.The inhalation of pharmaceutical aerosols is an attractive approach for the treatment of lung diseases such as chronic obstructive pulmonary diseases. This is also an interesting route for the treatment of systemic disorders with the potentially fast drug transfer into circulation. However, the transport and the deposition of particles within the lungs are complex and difficult to predict, since deposition patterns depend on a number of parameters, such as administration protocols, airway geometries, inhalation patterns, and gas and aerosol aerodynamic properties. Thus, understanding drug delivery through the lungs requires imaging methods to quantify particle deposition. MRI is less conventional than other approaches for lung characterization, but the technical advances and the multiple contrast mechanisms render lung imaging more feasible.To obtain exploitable signal from the lung parenchyma of the rat, an ultra-short echo (UTE) sequence was implemented on a 1.5 T clinical system. This technique was combined with a Gadolinium-based aerosol nebulization of short duration in spontaneously breathing rats. The main contrast mechanism used here is the modification of the longitudinal relaxation time yielding signal enhancement and allowing to assess the local concentration with a spatial resolution of (0.5 mm)3 and a temporal resolution of 7.5 min enabling to quantitatively follow up lung clearance. The sensitivity of this approach (with a detection limit close to 20 µM) was determined. To do so several specific processing methods were developed for local and total lung evaluation, including segmentation, distribution analysis and statistics. After validation in the healthy rats, for which a signal enhancement of 50% on average, a homogenous distribution of deposition and a relatively low total deposited dose (~1 µmol/kg body weight) were observed, this imaging modality could be applied in asthmatic and emphysematous animal models. Significant differences were obtained such as homogeneity of deposition or clearance. Moreover, preliminary results of a multimodal study, in which MRI was compared with computed tomography and with nuclear medicine imaging in the same animals, were obtained. Finally, in order to evaluate the feasibility of other potential quantitative MRI approaches, a dual-nuclei proton/fluorine system was implemented and tested in rats for determining the sensitivity of fluorine-based gas and aerosol imaging.These MRI strategies may be applied for the in vivo characterization of particle deposition inhaled under variable administration conditions. Their sensitivity suggests a feasible translation to human.
2

Development and Applications of 3D Ultra-short Echo Time MRI with Rosette k-Space Pattern

Xin Shen (13105116) 15 July 2022 (has links)
<p><br></p> <p>Magnetic resonance imaging (MRI) plays an important role in providing structural information, aiding in disease diagnosis, probing neuron activities, and etc. Sampling k-space, which is the Fourier transform of the image, is a necessary step in MRI scans. The most widely used k-space sampling strategy is the Cartesian trajectories. However, novel non-Cartesian trajectories are flexible and efficient in k-space sampling, permit shorter echo time, and are insensitive to motion artifacts. The non-Cartesian k-space patterns include radial, spiral, concentric rings, rosette, and etc. Some protons restricted by the chemical environment, or other nuclei because of their nature, have short transverse relaxation times (T<sub>2</sub>). Ultra-short echo time (UTE) and zero echo time (ZTE) modalities are the promising techniques to capture the rapid decaying signals directly. The common k-space pattern for UTE and ZTE applications is the three-dimensional radial acquisition, which allows a center-out trajectory. Rosette k-space trajectory, which also allows center-out sampling, is a potential candidate for UTE purposes. In addition, it acquires more samples in the peripheral k-space for better spatial resolution, and is more incoherent to stand image quality upon undersampling than radial. However, the rosette trajectories have not yet been applied in UTE.</p> <p> </p> <p>In this study, a 3D rosette k-space trajectory designed for UTE acquisition is developed. In addition, a rosette-based magnetic resonance spectroscopic imaging (MRSI) is also developed to measure metabolites with short echo time. A comparison between 3D rosette and 3D radial UTE sequences, based on both phantom and <em>in vivo</em> scans, was performed to test the performance of the novel sequence. In addition, the 3D rosette UTE sequence was also applied in 1) myelin bilayer imaging, 2) brain iron content mapping, 3) cartilage image by sodium MRI, and 4) phosphorus MRSI. In summary, the 3D rosette k-space trajectory performs better than radial, in terms of point spread function (PSF), signal-to-noise ratio (SNR), and ability to provide structural details. Furthermore, the applications have demonstrated that 3D rosette UTE sequence is able to capture fast decaying signals.</p>
3

Ultra Short MR Relaxometry and Histological Image Processing for Validation of Diffusion MRI

Nazaran, Amin 01 May 2016 (has links)
Magnetic Resonance Imaging (MRI) is an imaging modality that acquires an image with little to no damage to the tissue. MRI does not introduce foreign particles or high energy radiation into the body, making it one of the least invasive medical imaging modalities. MRI can achieve excellent soft tissue contrast and is therefore useful for diagnosis of a wide variety of diseases. While there are a wide variety of available techniques for generating contrast in MRI, there are still many open areas for research. For example, many tissues in the human body exhibit such rapid signal decay that they are difficult to image with MRI: they are "MRI invisible". Furthermore, some of the newer MRI imaging techniques have not been fully validated to ensure that they are truly revealing accurate information about the underlying anatomical microstructure that they purport to image. This dissertation focuses on the development of new techniques in two distinct areas. First, a novel method for accurately assessing the MRI signal decay properties of tissues that are normally MRI invisible, such as tendons, ligaments, and certain pathological chemical deposits in the brain, is presented. This is termed "ultrashort MRI relaxometry". Second, two new image processing algorithms that operate on high resolution images of stained histological slices of the ex vivo brain are presented. The first of these image processing algorithms allows the semi-automated extraction of nerve fiber directionality from the histological slice images, a process that is normally done manually, is incredibly time consuming, and is prone to human error. This new technique represents one significant step in the complicated problem of attempting to validate a popular MRI technique, Diffusion Tensor Imaging (DTI), by ensuring that DTI results correlate with the true underlying physiology revealed by histological slicing and staining. The second of these image processing algorithms attempts to extract and segment regions of different "cytoarchitectonic characteristics" from stained histological slices of ex vivo brain. Again, traditional cytoarchitectonic segmentation relies on manual segmentation by an expert neuroanatomist, which is slow and sometimes inconsistent. The new technique is a first step towards automated this process, potentially providing greater accuracy and repeatability of the segmentations in a much shorter time. Together, these contributions represent a significant contribution to the body of MR imaging techniques, and associated image processing techniques for validation of newer MR neuroimaging techniques against the gold standard of stained histological slices of ex vivo brain.
4

Quantitative MRI and Network Science Applications in Manganese Neurotoxicity

Humberto Monsivais (18424005) 23 April 2024 (has links)
<p dir="ltr">Manganese (Mn) is an essential trace element for humans that functions primarily as a coenzyme in several biological processes such as nerve and brain development, energy metabolism, bone growth and development, as well as cognitive functioning. However, overexposure to environmental Mn via occupational settings or contaminated drinking water can lead to toxic effects on the central nervous systems and cause a Parkinsonian disorder that features symptoms such as fine motor control deficits, dystonia rigidity, speech and mood disturbances, and cognitive deficits summarized under the term “manganism”. Over time, Mn exposure has shifted from acute, high-level instances leading to manganism, to low-level chronic exposure. Considering that Mn exposure is significantly lower than in the past, it is unlikely to expect manganism from chronic Mn exposure under current working conditions. Therefore, there is a need to develop sensitive methods to aid in updating the clinical diagnostic standards for manganism and Mn neurotoxicity as chronic exposure to Mn leads to more subtle symptoms.</p><p><br></p><p dir="ltr">Historically, magnetic resonance imaging (MRI) has been used as a non-invasive tool for detecting excess brain Mn accumulation. Specifically, T1-weighted images show bilateral hyperintensities of the globus pallidus (GP) due to the paramagnetic properties of Mn which increases the MR relaxation rate R1. Although the GP is considered the hallmark of excess brain Mn, this brain area is not necessarily associated with symptoms, exposure, or neuropsychological outcomes. Thus, the focus should not be on the GP only but on the entire brain. With recent advances in quantitative MRI (qMRI), whole brain mapping techniques allow for the direct measurement of relaxation rate changes due to Mn accumulation. The work in this dissertation uses such quantitative techniques and network science to establish novel computational in vivo imaging methods to a) visualize and quantify excess Mn deposition at the group and individual level, and b) characterize the toxicokinetics of excess brain Mn accumulation and the role of different brain regions in the development of neurotoxicity effects.</p><p><br></p><p dir="ltr">First, we developed a novel method for depicting excess Mn accumulation at the group level using high-resolution R1 relaxation maps to identify regional differences using voxel-based quantification (VBQ) and statistical parametric mapping. Second, we departed from a group analysis and developed subject-specific maps of excess brain Mn to gain a better understanding of the relationship between the spatial distribution of Mn and exposure settings. Third, we developed a novel method that combines network science with MRI relaxometry to characterize the storage and propagation of Mn and Fe in the human brain and the role of different brain regions in the development of neurotoxic effects. Lastly, we explore the application of ultra-short echo (UTE) imaging to map Fe content in the brain and compare it against R2* and quantitative susceptibility mapping (QSM).</p><p><br></p><p dir="ltr">Overall, this dissertation is a successful step towards establishing sensitive neuroimaging screening methods to study the effects of occupational Mn exposure. The individual Mn maps offer great potential for evaluating personal risk assessment for Mn neurotoxicity and allow monitoring of temporal changes in an individual, offering valuable information about the toxicokinetics of Mn. The integration of network science provides a holistic analysis to identify subtle changes in the brain’s mediation mechanisms of excess metal depositions and their associations with health outcomes.</p>
5

Magnetic resonance imaging techniques for pre-clinical lung imaging / Techniques d’IRM pour l’imagerie préclinique du poumon

Bianchi, Andrea 28 March 2014 (has links)
Dans ce travail, les s´séquences Imagerie par Résonance Magnétique (IRM) radiales à temps d’écho ultra-court (UTE) sont analysées pour évaluer leur potentiel dans l’étude non-invasive de différents modèles expérimentaux de maladies pulmonaires chez la souris. Chez le petit animal, les séquences radiales UTE peuvent efficacement limiter l’impact négatif sur la qualité de l’image dû au déphasage rapide des spins causé par les nombreuses interfaces air/tissu. En plus, les séquences radiales UTE sont moins sensibles aux artefacts de mouvement par rapport aux séquences Cartésiennes classiques. En conséquence, chez le petit animal, les séquences radiales UTE peuvent permettre d’obtenir des images du poumon avec une résolution bien inférieure au millimètre avec des rapports signal/bruit importants dans le parenchyme pulmonaire, tout en travaillant en conditions physiologiques (animaux en respiration spontanée). Dans cette thèse, il sera démontré que les séquences d’IRM protonique UTE sont outils efficaces dans l’étude quantitative et non-invasive de différents marqueurs distinctifs de certaines pathologies pulmonaires d’intérêt général. Les protocoles développés serontsimples, rapides et non-invasifs, faciles à implémenter, avec une interférence minimale sur la pathologie pulmonaire étudiée et, en définitive, potentiellement applicables chez l’homme. Il sera ainsi démontré que l’emploi des agents de contraste, administrés via les voies aériennes, permet d’augmenter la sensibilité des protocoles développés. Parallèlement, dans cette thèse des protocoles suffisamment flexibles seront implémentés afin de permettre l’étude d’un agent de contraste paramagnétique générique pour des applications aux poumons. / In this work, ultra-short echo time (UTE) Magnetic Resonance Imaging (MRI) sequences are investigated as flexible tools for the noninvasive study of experimental models of lung diseases in mice. In small animals radial UTE sequences can indeed efficiently limit the negative impact on lung image quality due to the fast spin dephasing caused by the multiple air/tissue interfaces. In addition, radial UTE sequences are less sensitive to motion artifacts compared to standard Cartesian acquisitions. As a result, radial UTE acquisitions can provide lung images in small animals at sub-millimetric resolution with significant signal to noise ratio in the lung parenchyma, while working with physiological conditions (freely-breathing animals). In this thesis, UTE proton MRI sequences were shown to be efficient instruments to quantitatively investigate a number of hallmarks in longitudinal models of relevant lung diseases with minimal interference with the lung pathophysiology, employing easilyimplementable fast protocols. The synergic use of positive contrast agents, along with anadvantageous administration modality, was shown to be a valuable help in the increase of sensitivity of UTE MRI. At the same time, UTE MRI was shown to be an extremely useful and efficacious sequence for studying positive contrast agents in lungs

Page generated in 0.058 seconds