• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synchronous motion of two-cylinder electro-hydraulic system with unbalanced loading

Liu, Li-Chiang 08 July 2002 (has links)
Abstract Traditional synchronous motion control of a multi-cylinder system was always achieved by using hydraulic loops design and constrained linkage mechanisms. Therefore, these control methodologies always have many disadvantages, such as inaccuracy, cost expensive, and huge volume of the equipment, and so on. In this paper, the nonlinear control strategy was proposed to control the proportional directional valves of two-cylinder electro-hydraulic system in order to achieve synchronous motion under the consideration of unbalanced and uncertainty loading. Besides, in order to explore influence of different loading to the system, two-cylinder mechanism was designed to have individual loading device without any hardware constrain between two pistons. And the maximum loading capacity for one piston is 210kg. Due to the highly complicated coupling effect of internal pressure and flow rate for two cylinders, in this paper, feedforward controller with three fuzzy controllers was designated to overcome the problem of synchronous motion. In the first, the feedforward controller of each cylinder is developed to track a desire velocity trajectory. Then, the fuzzy control of each cylinder was specified to improve the individual tracking performance. Finally, the third fuzzy controller was performed to compensate the coupling effect of two-cylinder in order to progressively improve the performance of synchronous motion. According to the experimental results, the proposed control strategy for synchronous motion of two-cylinder system was verified and the maximum synchronous error of the total system was controlled to be within 10mm. Keyword: synchronous motion; proportional directional valve; fuzzy controller; feedforward controller
2

Impact of overhang construction on girder design

Yang, Seongyeong 02 June 2010 (has links)
Economical constraints on the design of bridges usually necessitate the use of as few girders as possible across the bridge width. The girders are typically uniformly spaced transversely with the deck extending past the fascia girders, thereby resulting in an overhang. While designers commonly employ rules of thumb with regard to the geometry of the overhang, these rules of thumb generally lack research justification and the actual girder behavior is not well understood. Overhang construction often produces torsinally unbalanced loading on the girder system, which can lead to problems in steel and concrete girder bridges during construction. The main issue with concrete girder bridges is excessive lateral rotation in the fascia girder, which can cause potential problems of construction safety and maintenance. Field problems on concrete bridges have been reported in the state of Texas where the fascia girders experienced excessive rotation during construction. For steel girder bridges, the unbalanced overhang loading can lead to both local and global instability. Locally, the overhang brackets often exert a large force on the web plate that can distort the web and increase the magnitude of the plate imperfection. Global stability problems have also occurred primarily on bridge widening projects when a few girders are added to an existing bridge system. The girders in the widening are usually isolated from the existing bridge and the unbalanced load from the overhang can cause excessive twist that intensifies the global stability of the girder system. The objective of this study was to improve the understanding of the bridge behavior due to the unbalanced loading from the overhangs and to identify critical factors affecting the girder behavior. The study was also aimed at developing simple design methodologies and design recommendations for overhang construction. The research included field monitoring, laboratory tests, and parametric finite element analyses. The data from the field monitoring and laboratory tests were used to validate finite element models for both concrete and steel girder bridges. Based on the validated models, detailed parametric studies were conducted to investigate the effects of the unbalanced loading. Results from the parametric studies were used to identify the geometries of girder systems that are prone to problems with the overhangs as well as to provide design suggestions. In addition, a closed-form solution for lateral rotation in the fascia girder in a concrete girder bridge was derived using a rigid-body model, and was used to develop design methodology and design recommendations for overhang construction. / text
3

Flexural behavior of GFRP-reinforced concrete continuous beams

Rahman, S. M. Hasanur 12 August 2016 (has links)
In this study, a total of twelve beams continuous over two spans of 2,800 mm each were constructed and tested to failure. The beams were divided into two series. Series 1 included six T-beams under symmetrical loading, while Series 2 dealt with six rectangular beams under unsymmetrical loading conditions. In Series 1, the test variables included material type, assumed percentage of moment redistribution, spacing of lateral reinforcement in flange, arrangement of shear reinforcement, and serviceability requirements. In Series 2, three different loading cases were considered, I) loading both spans equally, II) loading both spans maintaining a load ratio of 1.5 and III) loading one span only. Under the loading case II, the parameters of reinforcing material type, assumed percentage of moment redistribution and serviceability requirements were investigated. The test results of both series showed that moment redistribution from the hogging to the sagging moment region took place in GFRP-RC beams which were designed for an assumed percentage of moment redistribution. In Series 1, the decrease of the stirrups spacing from 0.24d to 0.18d enhanced the moment redistribution percentage. Also, decreasing the spacing of lateral reinforcement in the flange from 450 to 150 mm improved the moment redistribution through enhancing the stiffness of the sagging moment region. In Series 2, the unsymmetrical loading conditions (loading case II and III) reduced the moment redistribution by reducing flexural stiffness in the heavily loaded span due to extensive cracking. Regarding serviceability in both series, the GFRP-RC beam designed for the same service moment calculated from the reference steel-RC beam, was able to meet the serviceability requirements for most types of the structural applications. / February 2017

Page generated in 0.0702 seconds