Spelling suggestions: "subject:"cwb"" "subject:"bwb""
231 |
Ultra-wideband Small Scale Channel Modeling and its Application to Receiver DesignMcKinstry, David R. 29 July 2003 (has links)
Recently, ultra-wideband (UWB) technology based on the transmission of short duration pulses has gained much interest for its application to wireless communications. This thesis covers a range of topics related to the analysis of indoor UWB channels for communications and to system level design issues for UWB receivers. Measurement based UWB small scale modeling and characterization efforts as well as UWB communications system analysis and simulation are presented.
Relevant background material related to UWB communications and wireless channel modeling is presented. The details of the small scale channel modeling work, including statistical characterization and potential models, are discussed. A detailed analysis of the CLEAN algorithm, which was used to process all the measurement data, is also given, and some limitations of the algorithm are presented.
The significance of the channel impulse response model chosen for the simulation of UWB communications systems is also evaluated. Three traditional models are found to be useful for modeling NLOS UWB channels, but not LOS channels. A new model for LOS UWB channels is presented and shown to represent LOS channels much more accurately than the traditional models.
Receiver architectures for UWB systems are also discussed. The performance of correlation receivers and energy detector receivers are compared as well as Rake diversity forms of each of these types to show tradeoffs in system complexity with performance. Interference to and by UWB signals is considered. A narrowband rejection system for UWB receivers is shown to offer significant system improvement is the presence of strong interferers. / Master of Science
|
232 |
Simulation and Mathematical Tools for Performance Analysis of Low-Complexity ReceiversDeora, Gautam Krishnakumar 19 February 2003 (has links)
In recent years, research on the design and performance evaluation of suboptimal receiver implementations has received considerable attention owing to complexity in the realization of the optimal receiver algorithms over wireless channels. This thesis addresses the effects of using reduced complexity receivers for the Satellite Digital Audio Radio (SDAR), Code Division Multiple Access (CDMA) and UltraWideband (UWB) communications technologies.
A graphical-user-interface simulation tool has been developed to predict the link reliability performance of the SDAR services in the continental United States. Feasibility study of receiving both satellite and terrestrial repeater signals using a selection diversity (single antenna) receiver has also been performed.
The thesis also develops a general mathematical framework for studying the efficacy of a sub-optimal generalized selection combining (GSC) diversity receiver over generalized fading channel models. The GSC receiver adaptively combines a subset of M diversity paths with the highest instantaneous signal-to-noise ratios (SNR) out of the total L available diversity paths. The analytical framework is applicable for rake receiver designs in CDMA and UWB communications. / Master of Science
|
233 |
A Study of Indoor Ultra-wideband Propagation Measurement and CharacterizationBayram, Ahmet 25 May 2004 (has links)
Ultra-wideband (UWB) communication is emerging as a new wireless technology, which promises high data rates with low interference and low power consumption. The development of such UWB systems requires a sufficiently large amount of data to characterize the propagation behavior of UWB signals in indoor environments and develop accurate channel models. This thesis focuses primarily on a frequency-domain approach for propagation measurements and characterization of indoor UWB channels. This approach is based on measurements of the amplitude using a scalar network analyzer and retrieval of the phase from the amplitude data using a Hilbert transform relationship.
Extensive propagation data are collected in a frequency range of 1 to 12 GHz in two buildings on Virginia Tech campus. Using the data, channel characterization results are obtained and compared to those based on time-domain measurements. Some statistical results for small-scale fading, path loss exponent, and signal quality are presented. This comparison validates the accuracy of measured results for the UWB measurement campaign. The measured data also reaffirms the immunity of UWB propagation to small-scale fading which is present in narrowband wireless communication systems.
In addition to channel propagation measurements, signal distortions in UWB links, due to bandwidth limitations of antenna characteristics as well as the dispersive behavior of building materials, are also examined. In particular, the distortion of radiated signals by TEM horn antennas along off-boresight directions are studied experimentally. Furthermore, pulse distortions resulting from propagation through dispersive walls are demonstrated by simulation. The roles of receive-transmit antennas in a UWB link are examined, and the requirements for gain, input impedance, polarization, and phase of the radiated signal necessary for minimization of signal distortions are pointed out. / Master of Science
|
234 |
Design of Planar Double Inverted-F Antenna for Ultra-Wideband ApplicationsSee, Chan H., Abd-Alhameed, Raed, Zhou, Dawei, Excell, Peter S. 2010 September 1922 (has links)
yes / A novel miniaturized planar double inverted-F antenna is presented. The antenna design is based on the electromagnetic coupling of two air dielectric PIFA antennas, combined with a broadband rectangular plate feed structure to achieve ultra-wideband characteristics. The computed and experimental impedance bandwidths show good agreement over an UWB frequency band from 3.1 GHz to 10.6 GHz for |S11| < -10dB. The antenna is electrically small, with size 0.31 x 0.16 x 0.09 wavelengths at 3.1 GHz and 1.06 x 0.55 x 0.31 wavelengths at 10.6 GHz. The simulated and measured gain and radiation patterns show acceptable agreement and confirm that the antenna has appropriate characteristics for short range wireless applications. / MSCRC
|
235 |
Performance Comparison of Particle Swarm Optimization, and Genetic Algorithm in the Design of UWB AntennaMohammed, Husham J., Abdullah, Abdulkareem S., Ali, R.S., Abdulraheem, Yasir I., Abd-Alhameed, Raed 08 1900 (has links)
Yes / An efficient multi-object evolutionary algorithms are proposed for optimizing frequency characteristics of antennas based on an interfacing created by Matlab environment. This interface makes a link with CST Microwave studio where the electromagnetic investigation of antenna is realized. Very small, compact printed monopole antenna is optimized for ultra- wideband (UWB) applications. Two objective functions are introduced; the first function intends to increase the impedance bandwidth, and second function to tune the antenna to resonate at a particular frequency. The two functions operate in the range of 3.2 to 10.6 GHz and depend on the level of return loss. The computed results provide a set of proper design for UWB system in which the bandwidth achieved is 7.5GHz at the resonance frequency 4.48GHz, including relatively stable gain and radiation patterns across the operating band.
|
236 |
Recent developments of reconfigurable antennas for 4G and 5G wireless communications: A surveyOjaroudi Parchin, Naser, Basherlou, H.J., Al-Yasir, Yasir I.A., Abd-Alhameed, Raed, Abdulkhaleq, Ahmed M., Noras, James M. 30 January 2020 (has links)
Yes / Reconfigurable antennas play important roles in smart and
adaptive systems and are the subject of many research studies. They
offer several advantages such as multifunctional capabilities, minimized volume requirements, low front-end processing efforts with
no need for a filtering element, good isolation, and sufficient out-ofband rejection; these make them well suited for use in wireless applications such as fourth generation (4G) and fifth generation (5G)
mobile terminals. With the use of active materials such as microelectromechanical systems (MEMS), varactor or p-i-n (PIN) diodes, an
antenna’s characteristics can be changed through altering the current
flow on the antenna structure. If an antenna is to be reconfigurable
into many different states, it needs to have an adequate number of
active elements. However, a large number of high-quality active elements increases cost, and necessitates complex biasing networks and
control circuitry.
We review some recently proposed reconfigurable antenna designs suitable for use in wireless communications such as cognitiveratio (CR), multiple-input multiple-output (MIMO), ultra-wideband
(UWB), and 4G/5G mobile terminals. Several examples of antennas
with different reconfigurability functions are analyzed and their performances are compared. Characteristics and fundamental properties
of reconfigurable antennas with single and multiple reconfigurability
modes are investigated. / European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424.
|
237 |
Design of RF CMOS Power Amplifier for UWB ApplicationsJose, Sajay 07 January 2005 (has links)
Ever since the FCC allocated 7.5 GHz (from 3.1 GHz to 10.6 GHz) for ultra wideband (UWB) technology, interest has been renewed in both academic and industrial circles to exploit this vast spectrum for short range, high data rate wireless applications. The great potential of UWB lies in the fact that it can co-exist with the already licensed spectrum users and can still pave the way for a wide range of applications.
However, this wide bandwidth complicates the circuit level implementation of key RF blocks like the power amplifier (PA), transmit/receive switch, low noise amplifier (LNA) and mixers in an UWB transceiver. Though expensive technologies like SiGe or GaAs have been used for transceiver realizations, the ultimate goal is to have a single-chip, low-cost solution which can only be achieved by using CMOS technology. Nevertheless, some of the inherent limitations of CMOS like lower fT of transistors make the design of UWB circuits in CMOS an extremely challenging task.
Two proposals- Multi-Band OFDM and Direct-Sequence CDMA have been put before the IEEE 802.15.3a task group to decide on the industry standard for the commercial deployment of this technology. Though the debate on which standard is better has not been resolved, proponents of both the groups have already begun to develop prototypes of their respective proposals.
This thesis describes the design of a key RF block in the UWB transceiver - the Power Amplifier. For the first part of this work, a PA suitable for MB-OFDM specifications was designed and fabricated in TSMC 0.18um CMOS technology. The class-AB PA is able to cover the lower UWB frequency band from 3.1 GHz to 4.75 GHz and delivers an output power of -2 dBm at 4 GHz. Simulated results show a gain of 19±2 dB achieved over the entire band and the PA consumes 36.54 mW from a 1.8V supply.
In the second part of this work, a PA that meets the DS-CDMA specifications was designed and fabricated. This PA operates in the class-AB regime, delivering an output power of -4.2 dBm with input-1dB compression point at -22 dBm. Complete design and implementation was done using TSMC 0.18um CMOS technology and it consumes a very low power of 25 mW, while realizing a flat gain of 19±1 dB across the whole band of operation. All the above mentioned results are from simulations in SpectreRF and measurements are yet to be taken. Additional features like power ON/OFF scheme and output impedance control has also been incorporated in the design. / Master of Science
|
238 |
Analysis of Advanced Diversity Receivers for Fading ChannelsGaur, Sudhanshu 15 January 2004 (has links)
Proliferation of new wireless technologies has rekindled the interest on the design, analysis and implementation of suboptimal receiver structures that provide good error probability performance with reduced power consumption and complexity particularly when the order of diversity is large. This thesis presents a unified analytical framework to perform a trade-off study for a class of hybrid generalized selection combining technique for ultra-wideband, spread-spectrum and millimeter-wave communication receiver designs.
The thesis also develops an exact mathematical framework to analyze the performance of a dual-diversity equal gain combining (EGC) receiver in correlated Nakagami-m channels, which had defied a simple solution in the past. The framework facilitates efficient evaluation of the mean and variance of coherent EGC output signal-to-noise ratio, outage probability and average symbol error probability for a broad range of digital modulation schemes. A comprehensive study of various dual-diversity techniques with non-independent and non-identical fading statistics is also presented.
Finally, the thesis develops some closed-form solutions for a few integrals involving the generalized Marcum Q-function. Integrals of these types often arise in the analysis of multichannel diversity reception of differentially coherent and noncoherent digital communications over Nakagami-m channels. Several other applications are also discussed. / Master of Science
|
239 |
Evaluation of GNU Radio Platform Enhanced for Hardware Accelerated Radio DesignKarve, Mrudula Prabhakar 05 January 2011 (has links)
The advent of software radio technology has enabled radio developers to design and implement radios with great ease and flexibility. Software radios are effective in experimentation and development of radio designs. However, they have limitations when it comes to high-speed, high-throughput designs. This limitation can be overcome by introducing a hardware element to the software radio platform. Enhancing GNU Radio for Hardware Accelerated Radio Design project implements such a scheme by augmenting an FPGA co-processor to a conventional GNU Radio flow. In this thesis, this novel platform is evaluated in terms of performance of a radio design, as well as hardware and software system requirements. A simple and efficient Zigbee receiver design is presented. Implementation of this receiver is used as a proof-of-concept for the effectiveness and design methodology of the modified GNU Radio. This work also proposes a scheme to extend this idea for design of ultra-wideband radio systems based on multiband-OFDM. / Master of Science
|
240 |
A novel meander bowtie-shaped antenna with multi-resonant and rejection bands for modern 5G communicationsFaouri, Y.S., Ahmad, S., Ojaroudi Parchin, Naser, See, C.H., Abd-Alhameed, Raed 27 March 2022 (has links)
Yes / To support various fifth generation (5G) wireless applications, a small, printed bowtie-shaped microstrip antenna with meandered arms is reported in this article. Because it spans the broad legal range, the developed antenna can serve or reject a variety of applications such as wireless fidelity (Wi-Fi), sub-6 GHz, and ultra-wideband (UWB) 5G communications due to its multiband characterization and optimized rejection bands. The antenna is built on an FR-4 substrate and powered via a 50-Ω microstrip feed line linked to the right bowtie’s side. The bowtie’s left side is coupled via a shorting pin to a partial ground at the antenna’s back side. A gradually increasing meandering microstrip line is connected to both sides of the bowtie to enhance the rejection and operating bands. The designed antenna has seven operating frequency bands of (2.43–3.03) GHz, (3.71–4.23) GHz, (4.76–5.38) GHz, (5.83–6.54) GHz, (6.85–7.44) GHz, (7.56–8.01) GHz, and (9.27–13.88) GHz. The simulated scattering parameter S11 reveals six rejection bands with percentage bandwidths of 33.87%, 15.73%, 11.71, 7.63%, 6.99%, and 12.22%, respectively. The maximum gain of the proposed antenna is 4.46 dB. The suggested antenna has been built, and the simulation and measurement results are very similar. The reported antenna is expanded to a four-element design to investigate its MIMO characteristics. / Partially funded by British Council “2019 UK-China-BRI Countries Partnership Initiative” program, with project titled “Adapting to Industry 4.0 oriented International Education and Research Collaboration.
|
Page generated in 0.0512 seconds