1 |
Investigation of Ligand Surface Chemistry: Implications for the Use of £]-Diketonate Copper(I) Complexes as Precursors for Copper Thin-film GrowthKuo, Wen-Chieh 24 July 2002 (has links)
Two most useful families of copper CVD precursors that have been utilized widely are the Cu(I) and Cu(II) £]-diketone complexes. The Cu(II)precursors require the use of an external reducing agent such as hydrogen to
deposit copper films, i.e. CuII(£]-diketonate)2 + H2 ¡÷ Cu0+2 £]-diketonate.
The Cu(I) precursors deposit pure copper films without the use of an external
agent via a disproportionation reaction that produces a Cu(II)£]-diketonate in
conjunction with other organic byproducts, i.e. 2CuI(£]-diketonate)L ¡÷
Cu0+ CuII(£]-diketonate)2+2L where L is a typical Lewis base neutral ligand.
However, Do those ligands resulting from the dissociation of the precursors
simply desorb intact from the substrate or the growing films, or react further on the surface? To understand the surface chemistry of these ligands may provide better knowledge for designing more superior precursors and improvement of fabrication processes.
Cu(hfac)(VTMS) and Cu(hfac)(MHY) are the most promising Cu(I) precursors, as shown in Scheme 1.1. Here we report studies on the chemistry
of VTMS, MHY and hfacH on a Cu(111) surface. It should be noted that the hfacH is the simplest molecule containing the hfac, so we use it as a reference for £]-diketonate ligand. The Cu(111) single crystal was used to mimic the reactivity of these ligands on a growing Cu film during copper CVD. In situ analysis of ligand surface chemistry is carried out by TPD/R
(temperature-programmed desorption/reaction) and RAIRS (reflection adsorption infrared spectroscopy) to elucidate plausible reaction mechanisms by which ligands decompose and eventually lead to impurity incorporation
into the growing films, and to suggest means of minimizing such reactions.
|
2 |
Manufacture, modelling and characterisation of novel composite tubesAgwubilo, Ikenna January 2016 (has links)
This thesis primarily focused on the development of novel composite tubes by braiding. The objective was to use hierarchical scale technique, i.e., micro, meso and macro scales, with the transfer of information from one scale to another to develop novel braided composite tubes. This research was conducted and reported in three journal papers. The aim of the first paper was to predict plane elastic properties for E-glass/epoxy braided composite structures at different braid orientations, by analytical and finite element techniques. The lenticular shape has been used to describe the geometry of the tow. Modified lenticular geometric model was developed to improve an existing geometric model, in terms of tow parameters, thereafter, plane elastic properties from Chamis micromechanical model for E-glass fibre and epoxy matrix without any knockdown effects were used as benchmark to develop predictive models, namely; Lekhnitskii's methodology and braided unit cell meso-scale finite element model to account for the effects of tow geometry, undulations/crimp, cross-over and braid orientations on the plane elastic properties of E-glass/epoxy composite. The results showed agreement in trend between the predictive models, Chamis micromechanical model, and a similar existing model. However, the plane elastic properties were knocked down in predictive models by 30% in the E11 direction and 32% in the E22 direction, when compared with Chamis micro-mechanical model for largest ±65° braid angle, among the braid angles, considered. The aim of the second paper was to manufacture E-glass/epoxy braided tubes at different braid orientations by vacuum bag infusion technique, conduct internal pressure tests, and determine the hoop and axial moduli of the infused tubes. Lekhnitskii's methodology was also used to develop plane elastic moduli by experiment using microscopy results, and by calculation. The experimental elastic moduli of the infused tubes and the experimental elastic moduli from Lekhnitskii's methodology were used to compare the predictive elastic moduli for E-glass/epoxy braided structures by Chamis micro-mechanical model, and the braided unit cell meso-scale finite element model. The two were from another paper. Results showed a perfect agreement in trend between the experimental results and the predictive results. However, the values of the experimental results were close but lower than the predicted results. Optical microscopy was performed on braided tube cross-section to evaluate the level of crimp or undulation. This was done by the determination of tow centreline crimp angle and aspect ratio. Results show that when compared with the predicted crimp, there was an agreement in trend, although the experimental results were lower than the predicted. Also, the knockdown factor was evaluated and used to quantify the reduction in experimental elastic moduli when compared with the predicted. Results showed that the absences of crimp in the Chamis model caused a tremendous difference between it, other predicted models and the experiment results. The elastic moduli of Chamis were by far higher than all others, including other predictive models. The purpose of the third paper was to manufacture E-glass/epoxy braided tube at ±31°, ±45°, ±55°, ±65° braid orientations using vacuum bagging and resin infusion technique, to design and manufacture a rig for tube internal pressures experiment, to determine the hoop and axial stress performances of the tubes by internal pressure experiment, to compare experimental results with laminate analysis predictions to evaluate the effect of crimp on the internal pressure performance of the braided tubes. To use E-glass braided tow meso-scale unit cell finite element model to predict the tow critical stresses, and the optimum braided tube architecture, using tube hoop and axial failure stresses or strains. The tubes were manufactured and subjected to internal pressure test (2:1), to failure. Failure mode was by weeping and bursting. Hoop stress was twice the axial stress. The highest value of hoop stress was at the ±65° braid angle, higher than the hoop stresses at the ±31°, ±45°, and ±55 ° braid angles by 50%, 39%, and 28% respectively. Hoop stress increased with increase in braid angle. The experimental results were validated by laminate analysis predictions by Chamis micro-mechanical model and Lekhnitskii's methodology, and the trend of the laminate analysis prediction matched that of the experimental results. However, the predicted values were higher than the experimental results by 21%, 14%, 11%, 10% for the ±31°, ±45°, ±55°, ±65° braid angles for the Chamis micro-mechanical model and 5%, 7%, 7%, 5% for the ±31°, ±45°, ±55°, ±65 braid angles respectively for the Lekhnitskii's model, showing the severe effect of crimp in the experimental tube, mostly when compared with Chamis micro-mechanical model. Braided tow unit cell finite element model prediction, showed that tow axial stresses increased with increase in braid angle, while the tow transverse stresses decreased with increase in braid angle. The predictions showed that the tow critical stresses and the tube optimum braided architecture lie between the ±65° and 90° braid angles. The tow critical stresses are the stresses at which the tow decreasing transverse stress and the tow increasing axial stress causes the tube to fail.
|
3 |
Modelování a řízení toků elektrické a tepelné energie v plně elektrických automobilech / Modeling and Control of Electric and Thermal Flows in Fully Electric VehiclesGlos, Jan January 2020 (has links)
Systematické řízení tepelných a elektrických toků v plně elektrických automobilech se stává velmi důležitým, protože v těchto typech automobilů není k dispozici dostatek odpadního tepla pro vytápění kabiny. Aby v zimním období nedocházelo ke snížení dojezdu, je nutné použití technologií, které umožní snížení spotřeby energie nutné k vytápění kabiny (např. tepelné čerpadlo, zásobník tepla). Je také zapotřebí vytvořit řídicí algoritmy pro tato zařízení, aby byl zajištěn jejich optimální provoz. V letním období je nezbytné řídit tepelné toky v rámci elektromobilu tak, aby nedocházelo k nadměrnému vybíjení baterie kvůli chlazení kabiny a dalších částí. Tato práce řeší jak návrh řídicích algoritmů, tak i vývoj rozhodovacího algoritmu, který zajistí směřování tepelných toků.
|
Page generated in 0.0255 seconds