• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 3
  • 1
  • Tagged with
  • 34
  • 34
  • 12
  • 10
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Manufacturing of Variable Stiffness Cellular Architecture

Xie, Ruinan January 2017 (has links)
Cellular structures are highly evaluated due to their high material efficiency. Both theoretical and experimental studies have done on periodic cellular structures. However, the mechanical performance can be stochastically distributed in the cellular architecture. This thesis presents the design and manufacturing of variable stiffness cellular architecture to achieve optimized topology by changing the unit cell parameters. The author applies image analysis technique to extract and digitize the information from the performance distribution map. Two types of cellular cells are studied for their relationship of stiffness and relative density. The methods of voxelization for both cells are also given in this study. This proposed methodology is then implemented to design a customized mattress and compare with current existing mattress. With the study of the unit cells and voxelization technique, our designed mattress aligns body curve better which provides more recuperation of the body during sleep.
2

<b>Design and Modeling of Variable Stiffness Mechanisms </b><b>for</b><b> </b><b>Collaborative</b><b> </b><b>Robots</b><b> </b><b>and</b><b> </b><b>Flexible</b><b> </b><b>Grasping</b>

Jiaming Fu (18437502) 27 April 2024 (has links)
<p dir="ltr">To ensure safety, traditional industrial robots must operate within cages to separate them from human workers. This requirement has led to the rapid development of collaborative robots (cobots) designed to work closely to humans. However, existing cobots often prioritize <a href="" target="_blank">performance </a>aspects, such as precision, speed, and payload capacity, or prioritize safety, leading to a challenging balance between them. To address this issue, this dissertation introduces innovative concepts and methodologies for variable stiffness mechanisms. These mechanisms are applied to create easily fabricated cobot components to allow for controllable trade-offs between safety and performance in human-robot collaboration intrinsically. Additionally, the end-effectors developed based on these mechanisms enable the flexible and adaptive gripping of objects, enhancing the utility and efficiency of cobots in various applications.</p><p dir="ltr">This article-based dissertation comprises five peer-reviewed articles. The first essay introduces a reconfigurable variable stiffness parallel-guided beam (VSPB), whose stiffness can be adjusted discretely. An accurate stiffness model is also established, capable of leveraging a simple and reliable mechanical structure to achieve broad stiffness variation. The second essay discusses several discrete variable stiffness actuators (DVSAs) suitable for robotic joints. These DVSAs offer high stiffness ratios, rapid shifting speeds, low energy consumption, and compact structures compared to most existing variable stiffness actuators. The third essay introduces a discrete variable stiffness link (DVSL), applied to the robotic arm of a collaborative robot. Comprising three serially connected VSPBs, it offers eight different stiffness modes to accommodate diverse application scenarios, representing the first DVSL in the world. The fourth essay presents a variable stiffness gripper (VSG) with two fingers, each capable of continuous stiffness adjustment. The VSG is a low-cost, customizable universal robotic hand capable of successfully grasping objects of different types, shapes, weights, fragility, and hardness. The fifth essay introduces another robotic hand, the world's first discrete variable stiffness gripper (DVSG). It features four different stiffness modes for discrete stiffness adjustment in various gripper positions by on or off the ribs. Therefore, unlike the VSG, the DVSG focuses more on adaptability to object shapes during grasping.</p><p dir="ltr">These research achievements have the potential to facilitate the construction and popularize of next-generation collaborative robots, thereby enhancing productivity in industry and possibly leading to the integration of personal robotic assistants into countless households.</p>
3

HydroBone and Variable Stiffness Exoskeleton with Knee Actuation

Sridar, Saivimal 27 April 2016 (has links)
The HydroBone is a variable stiffness load-bearing element, which utilizes jamming of granular media to achieve stiffness modulation, controlled by the application of positive pressure. Several compressive tests were conducted on the HydroBone in order to quantify the load-bearing capability of the system. It was determined that the stiffness of the HydroBone was a function of the internal pressure of the system. A controller was modeled based on this function to achieve automatic stiffness modulation of the HydroBone. An exoskeleton was designed based on the HydroBone and various actuators for the exoskeleton were considered. The HydroMuscle, a soft linear actuator was selected to provide knee actuation for the exoskeleton, based on several efficiency and force output test conducted. A knee brace was designed, capable of producing 15Nm of torque on the knee, actuated using Bowden cables coupled to the HydroMuscles.
4

Sensors and Responsive Structures for Soft Robotic Systems

Michelle Yuen (5930465) 16 January 2019 (has links)
Soft robots present the opportunity to extend the capabilities currently demonstrated within the field of robotics. By utilizing primarily soft materials in their construction, soft robots are inherently safe to operate around humans, can handle delicate tasks without advanced controls, and are robust to shocks and impacts during deployment. While proof-of-concept devices have been demonstrated successfully, there remains a need for widely applicable, reliable soft robotic components. This dissertation presents sensors to reliably measure the large deformations exhibited in soft robotic structures and responsive structures enabled by variable stiffness materials that can switch from flexible to stiff on-demand. By characterizing the sensors from the material level, through the manufacturing, to the completed functional device, the fabrication processes can be depended upon to produce sensors with predictable, reliable performance. The sensors were applied to various soft robotic systems through implementation on the surface of the structures to measure surface strains, and embedded in the body of the robot to measure body deformations. The sensory feedback was used to reconstruct the state of and to perform closed-loop control of the soft robot's position. Variable stiffness materials that switch from rigid to soft through application of heat were leveraged to create responsive structures that can be deformed or reconfigured on-demand. This capability is necessary for soft robots to exert load onto the external environment and enables a wider range of interactions with target objects. The work presented in this dissertation furthers the field of soft robotics by illustrating a path toward proven, reliable soft sensors for measuring large strains and variable stiffness materials to create responsive structures.
5

Legged robotic locomotion with variable impedance joints

Enoch, Alexander Michael January 2016 (has links)
Humans have a complex musculoskeletal arrangement which gives them great behavioural flexibility. As well as simply moving their legs, they can modulate the impedance of them. Variable impedance has become a large field in robotics, and tailoring the impedance of a robot to a particular task can improve efficiency, stability, and potentially safety. Locomotion of a bipedal robot is a perfect example of a task for which variable impedance may provide such advantages, since it is a dynamic movement which involves periodic ground impacts. This thesis explores the creation of two novel bipedal robots with variable impedance joints. These robots aim to achieve some of the benefits of compliance, while retaining the behavioural flexibility to be truly versatile machines. The field of variable impedance actuators is explored and evaluated, before the design of the robots is presented. Of the two robots, BLUE (Bipedal Locomotion at the University of Edinburgh) has a 700mm hip rotation height, and is a saggital plane biped. miniBLUE has a hip rotation height of 465mm, and includes additional joints to allow hip adduction and abduction. Rapid prototyping techniques were utilised in the creation of both robots, and both robots are based around a custom, high performance electronics and communication architecture. The human walking cycle is analysed and a simple, parameterised representation developed. Walking trajectories gathered from human motion capture data, and generated from high level gait determinants are evaluated in dynamic simulation, and then on BLUE. With the robot being capable of locomotion, we explore the effect of varying stiffness on efficiency, and find that changing the stiffness can have an effect on the energy efficiency of the movement. Finally, we introduce a system for goal-based teleoperation of the robots, in which parameters are extracted from a user in a motion capture suit and replicated by the robot. In this way, the robot produces the same overall locomotion as the human, but with joint trajectories and stiffnesses that are more suited for its dynamics.
6

A Compliant Mechanism-Based Variable-Stiffness Joint

Robinson, Jacob Marc 01 April 2015 (has links) (PDF)
A review of current variable-stiffness actuators reveals a need for more simple, cost effective, and lightweight designs that can be easily incorporated into a variety of human-interactive robot platforms. This thesis considers the potential use of compliant mechanisms to improve the performance of variable-stiffness actuators. The advantages and disadvantages of various concepts using compliant mechanisms are outlined, along with ideas for further exploration. A new variable-stiffness actuator that uses a compliant flexure as the elastic element has been modeled, built, and tested. This new design involves a variable stiffness joint that makes use of a novel variable transmission. A prototype has been built and tested to verify agreement with the model which shows a reasonable range of stiffness and good repeatability. Ideas for further exploration are identified.
7

Analysis of Tow-Placed, Variable-Stiffness Laminates

Waldhart, Chris 05 June 1996 (has links)
It is possible to create laminae that have spatially varying fiber orientation with a tow placement machine. A laminate which is composed of such plies will have stiffness properties which vary as a function of position. Previous work had modelled such variable-stiffness laminae by taking a reference fiber path and creating subsequent paths by shifting the reference path. This thesis introduces a method where subsequent paths are truly parallel to the reference fiber path. The primary manufacturing constraint considered in the analysis of variable-stiffness laminates was limits on fiber curvature which proved to be more restrictive for parallel fiber laminae than for shifted fiber. The in-plane responses of shifted and parallel fiber variable-stiffness laminates to either an applied uniform end shortening or in-plane shear were determined. Both shifted and parallel fiber variable-stiffness laminates can redistribute the applied load thereby increasing critical buckling loads compared to traditional straight fiber laminates. The primary differences between the two methods is that parallel fiber laminates are not able to redistribute the loading to the degree of the shifted fiber. This significantly reduces the increase in critical buckling load for parallel fiber variable-stiffness laminates over straight fiber laminates. / Master of Science
8

Modeling, Analysis, and Experiments of Inter Fiber Yarn Compaction Effects in Braided Composite Actuators

Zhang, Zhiye 12 November 2012 (has links)
The braided composite actuator is a pressure-driven muscle-like actuator capable of large displacements as well as large blocking forces. It consists of an elastomeric tube reinforced by a sleeve braided by high performance fibers. In addition to the actuation properties, this actuator can also exhibit a large change in stiffness through simple valve control when the working fluid has a high bulk modulus. Several analytical models have been previously developed that capture the geometrical and material nonlinearities, the compliance of the inner liner, and entrapped air in the fluid. The inter fiber yarn compaction in the fiber layer, which is shown to reduce the effective closed-valve stiffness, is studied. A new analytical model for uniformly deformed actuators is developed to capture the compaction effect. This model considers the inter fiber yarn compaction effect and the fiber extensibility as well as the material and geometric nonlinearities. Analysis and experimental results demonstrate that the new compaction model can improve the prediction of the response behavior of the actuator. The compaction model is improved by considering the yarn bending stiffness. The governing equations are derived and the solution algorithm is presented. / Ph. D.
9

A Variable-Stiffness Compliant Mechanism for Stiffness-Controlled Haptic Interfaces

Hawks, Jeffrey C 01 December 2014 (has links) (PDF)
In this research a variable-stiffness compliant mechanism was developed to generate variable force-displacement profiles at the mechanisms coupler point. The mechanism is based on a compliant Roberts straight-line mechanism, and the stiffness is varied by changing the effective length of the compliant links with an actuated slider. The variable-stiffness mechanism was used in a one-degree-of-freedom haptic interface to demonstrate the effectiveness of varying the stiffness of a compliant mechanism. Unlike traditional haptic interfaces, in which the force is controlled using motors and rigid links, the haptic interface developed in this work displays haptic stiffness via the variable-stiffness compliant mechanism. The force-deflection behavior of the mechanismwas analyzed using the Pseudo-Rigid Body Model (PRBM), and two key parameters, KQ and g,were optimized using finite element analysis (FEA) to match the model with the behavior of the device. One of the key features of the mechanism is that the inherent return-to-zero behavior of the compliant mechanism was used to provide the stiffness feedback felt by the user. A prototype haptic interface was developed capable of simulating the force-displacement profile of Lachmans Test performed on an injured ACL knee. The compliant haptic interface was capable of displaying stiffnesses between 4200 N/m and 7200 N/m.
10

Kinematically singular pre-stressed mechanisms as new semi-active variable stiffness springs for vibration isolation

Azadi Sohi, Mojtaba 11 1900 (has links)
Researchers have offered a variety of solutions for overcoming the old and challenging problem of undesired vibrations. The optimum vibration-control solution that can be a passive, semi-active or active solution, is chosen based on the desired level of vibration-control, the budget and the nature of the vibration source. Mechanical vibration-control systems, which work based on variable stiffness control, are categorized as semi-active solutions. They are advantageous for applications with multiple excitation frequencies, such as seismic applications. The available mechanical variable stiffness systems that are used for vibration-control, however, are slow and usually big, and their slowness and size have limited their application. A new semi-active variable stiffness solution is introduced and developed in this thesis to address these challenges by providing a faster vibration-control system with a feasible size. The new solution proposed in this thesis is a semi-active variable stiffness mount/isolator called the antagonistic Variable Stiffness Mount (VSM), which uses a variable stiffness spring called the Antagonistic Variable stiffness Spring (AVS). The AVS is a kinematically singular prestressable mechanism. Its stiffness can be changed by controlling the prestress of the mechanisms links. The AVS provides additional stiffness for a VSM when such stiffness is needed and remains inactive when it is not needed. The damping of the VSM is constant and an additional constant stiffness in the VSM supports the deadweight. Two cable-mechanisms - kinematically singular cable-driven mechanisms and Prism Tensegrities - are developed as AVSs in this thesis. Their optimal configurations are identified and a general formulation for their prestress stiffness is provided by using the notion of infinitesimal mechanism. The feasibility and practicality of the AVS and VSM are demonstrated through a case study of a typical engine mount by simulation of the mathematical models and by extensive experimental analysis. A VSM with an adjustable design, a piezo-actuation mechanism and a simple on-off controller is fabricated and tested for performance evaluation. The performance is measured based on four criteria: (1) how much the VSM controls the displacement near the resonance, (2) how well the VSM isolates the vibration at high frequencies, (3) how well the VSM controls the motion caused by shock, and (4) how fast the VSM reacts to control the vibration. For this evaluation, first the stiffness of the VSM was characterized through static and dynamic tests. Then performance of the VSM was evaluated and compared with an equivalent passive mount in two main areas of transmissibility and shock absorption. The response time of the VSM is also measured in a realistic scenario.

Page generated in 0.0464 seconds