Spelling suggestions: "subject:"cascular smooth nuscle"" "subject:"cascular smooth 1l1uscle""
141 |
Mécanismes moléculaires de la transdifférenciation des cellules musculaires lisses et calcification dans l'athérosclérose / Molecular mechanisms of vascular smooth muscle cell trans-differentiation and calcification in atherosclerosisRoszkowska, Monika 06 April 2018 (has links)
Chez les patients atteints d'athérosclérose, les calcifications vasculaires sont une caracteristique des plaques d'athérome. Elles résultent de la trans-différenciation des cellules musculaires lisses (CMLs) en cellules de type ostéoblastique et/ou chondrocytaire, notamment en réponse à des cytokines inflammatoires. Les CMLs forment alors des cristaux par l'activité de la phosphatase alcaline non-spécifique du tissu (TNAP). A la lumière de résultats récents, nous avons émis l'hypothèse que la TNAP module la trans-différenciation des CMLs. Nos objectifs étaient donc de déterminer l'effet de la TNAP dans la trans-différenciation des CMLs, et d'étudier les mécanismes impliqués dans son induction. Nous avons observé que l'ajout de phosphatase alcaline purifiée ou la surexpression de TNAP stimule l'expression de marqueurs chondrocytaires en culture de CMLs et de cellules souches mésenchymateuses. De plus, l'inhibition de la TNAP bloque la maturation de chondrocytes primaires. Nous avons observé un rôle des cristaux formés par la TNAP, puisque l'ajout de cristaux seuls ou associés à une matrice collagénique a reproduit les effets de la TNAP. Nous suspectons que la TNAP agit en hydrolysant le PPi et en générant des cristaux. Ces cristaux ensuite induisent l'expression du facteur ostéogénique BMP-2 et l'inhibition des effets de la BMP-2 annule les effets de la TNAP. De plus, nous étions intéressés par les la localisation et la fonction de marqueurs de minéralisation comme les annexines en parallèle de la TNAP. Nous avons observé que l'activité TNAP des CMLs induit la minéralisation en grande partie quand la TNAP est associée aux vésicules matricielles et au fibres de collagène / Vascular calcification (VC) is a hallmark of atherosclerosis plaques. Calcification (formation of apatite) of advanced lesions share common features with endochondral ossification of long bones and appears to stabilize plaques. This process is associated with trans-differentiation of vascular smooth muscle cells (VSMCs) into chondrocyte-like cells. On the other hand, microcalcification of early plaques, which is poorly understood, is thought to be harmful. The two proteins necessary for physiological mineralization are tissue-nonspecific alkaline phosphatase (TNAP) and collagen. Under pathological conditions, TNAP is activated by inflammatory cytokines in VSMCs, whereas collagen is produced constantly. The activation of TNAP appears to induce calcification of these cells. Therefore, the objective of this PhD thesis was to study the role of TNAP and generated apatite crystals in the VSMC trans-differentiation and determine underlying molecular mechanisms. Based on the obtained results, we propose that activation of BMP-2, a strong inducer of ectopic calcification, and formation of apatite crystals generated by TNAP represents a likely mechanism responsible for stimulation of VSMC trans-differentiation. Moreover, we were interested in localization and function of mineralization markers such as TNAP and annexins in mineralization process mediated by trans-differentiated VSMCs and VSMC-derived matrix vesicles (MVs). We observed that, similarly as in the case of typical mineralizing cells, increased TNAP activity in VSMC-derived MVs and association with collagen were important for their ability to mineralize
|
142 |
Enhanced methylglyoxal formation in cystathionine γ-lyase knockout miceUntereiner, Ashley Anne 24 June 2011
<p>Methylglyoxal (MG) is a reactive glucose metabolite and a known causative factor for hypertension and diabetes. Hydrogen sulfide (H<sub>2</sub>S), on the other hand, is a gasotransmitter with multifaceted physiological functions, including anti-oxidant and vasodilatory properties. The present study demonstrates that MG and H<sub>2</sub>S can interact with and modulate each other's functions. Upon <i>in vitro</i> incubations, we found that MG and H<sub>2</sub>S can directly interact to form three possible MG-H<sub>2</sub>S adducts. Furthermore, the endogenous production level of MG or H<sub>2</sub>S was significantly reduced in a concentration-dependent manner in rat vascular smooth muscle cells (A-10 cells) treated with NaHS, a H<sub>2</sub>S donor, or MG, respectively. Indeed, MG-treated A-10 cells exhibited a concentration-dependent down-regulation of the protein and activity level of cystathionine γ-lyase (CSE), the main H<sub>2</sub>S-generating enzyme in the vasculature. Moreover, H<sub>2</sub>S can induce the inhibition of MG-generated ROS production in a concentration-dependent manner in A-10 cells. In 6-22 week-old CSE knockout male mice (CSE<sup>-/-</sup>), mice with lower levels of vascular H<sub>2</sub>S, we observed a significant elevation in MG levels in both plasma and renal extracts. Renal triosephosphates were also significantly increased in the 6-22 week-old CSE<sup>-/-</sup> mice. To identify the source of the elevated renal MG levels, we found that the activity of fructose-1,6-bisphosphatase (FBPase), the rate-limiting enzyme in gluconeogenesis, was significantly down-regulated, along with lower levels of its product (fructose-6-phosphate) and higher levels of its substrate (fructose-1,6-bisphosphate) in the kidney of 6-22 week-old CSE<sup>-/-</sup> mice. We have also observed lower levels of the gluconeogenic regulator, peroxisome
proliferator-activated receptor-γ coactivator (PGC)-1α, and its down-stream targets, FBPase-1 and -2, phosphoenolpyruvate carboxykinase (PEPCK), and estrogen-related receptor (ERR)α mRNA expression levels in renal extracts from 6-22 week-old CSE<sup>-/-</sup> mice. Likewise, FBPase-1 and -2 mRNA levels were also significantly down-regulated in aorta tissues from 14-16 week-old CSE<sup>-/-</sup> mice. Administration of 30 and 50 µM NaHS induced a significant increase in FBPase-1 and PGC-1α in rat A-10 cells. We have also observed a significant up-regulation of PEPCK and ERRα mRNA expression levels in 50 µM NaHS-treated A-10 cells, further confirming the involvement of H<sub>2</sub>S in regulating the rate of gluconeogenesis and MG formation. Overall, this unique study demonstrates the existence of a negative correlation between MG and H<sub>2</sub>S in the vasculature. Further elucidation of this cross-talk phenomenon between MG and H<sub>2</sub>S could lead to more elaborate and effective therapeutic regimens to combat metabolic syndrome and its related health complications.</p>
|
143 |
Enhanced methylglyoxal formation in cystathionine γ-lyase knockout miceUntereiner, Ashley Anne 24 June 2011 (has links)
<p>Methylglyoxal (MG) is a reactive glucose metabolite and a known causative factor for hypertension and diabetes. Hydrogen sulfide (H<sub>2</sub>S), on the other hand, is a gasotransmitter with multifaceted physiological functions, including anti-oxidant and vasodilatory properties. The present study demonstrates that MG and H<sub>2</sub>S can interact with and modulate each other's functions. Upon <i>in vitro</i> incubations, we found that MG and H<sub>2</sub>S can directly interact to form three possible MG-H<sub>2</sub>S adducts. Furthermore, the endogenous production level of MG or H<sub>2</sub>S was significantly reduced in a concentration-dependent manner in rat vascular smooth muscle cells (A-10 cells) treated with NaHS, a H<sub>2</sub>S donor, or MG, respectively. Indeed, MG-treated A-10 cells exhibited a concentration-dependent down-regulation of the protein and activity level of cystathionine γ-lyase (CSE), the main H<sub>2</sub>S-generating enzyme in the vasculature. Moreover, H<sub>2</sub>S can induce the inhibition of MG-generated ROS production in a concentration-dependent manner in A-10 cells. In 6-22 week-old CSE knockout male mice (CSE<sup>-/-</sup>), mice with lower levels of vascular H<sub>2</sub>S, we observed a significant elevation in MG levels in both plasma and renal extracts. Renal triosephosphates were also significantly increased in the 6-22 week-old CSE<sup>-/-</sup> mice. To identify the source of the elevated renal MG levels, we found that the activity of fructose-1,6-bisphosphatase (FBPase), the rate-limiting enzyme in gluconeogenesis, was significantly down-regulated, along with lower levels of its product (fructose-6-phosphate) and higher levels of its substrate (fructose-1,6-bisphosphate) in the kidney of 6-22 week-old CSE<sup>-/-</sup> mice. We have also observed lower levels of the gluconeogenic regulator, peroxisome
proliferator-activated receptor-γ coactivator (PGC)-1α, and its down-stream targets, FBPase-1 and -2, phosphoenolpyruvate carboxykinase (PEPCK), and estrogen-related receptor (ERR)α mRNA expression levels in renal extracts from 6-22 week-old CSE<sup>-/-</sup> mice. Likewise, FBPase-1 and -2 mRNA levels were also significantly down-regulated in aorta tissues from 14-16 week-old CSE<sup>-/-</sup> mice. Administration of 30 and 50 µM NaHS induced a significant increase in FBPase-1 and PGC-1α in rat A-10 cells. We have also observed a significant up-regulation of PEPCK and ERRα mRNA expression levels in 50 µM NaHS-treated A-10 cells, further confirming the involvement of H<sub>2</sub>S in regulating the rate of gluconeogenesis and MG formation. Overall, this unique study demonstrates the existence of a negative correlation between MG and H<sub>2</sub>S in the vasculature. Further elucidation of this cross-talk phenomenon between MG and H<sub>2</sub>S could lead to more elaborate and effective therapeutic regimens to combat metabolic syndrome and its related health complications.</p>
|
144 |
Nanopatterned Tubular Collagen Scaffolds For Vascular Tissue EngineeringZorlutuna, Pinar 01 July 2009 (has links) (PDF)
One of the major causes of death in developed countries is cardiovascular disease that affects small and medium sized blood vessels. In most cases autologous grafts have to be used which have limited availability. A functional tissue engineered vessel can be the ultimate solution for vascular reconstruction. Tissue engineered constructs with cells growing in an organized manner have been shown to have improved mechanical properties. In the present study collagen scaffolds with 650 nm, 500 nm and 332.5 nm wide channels and ridges were seeded with human vascular smooth muscle cells (VSMC) and human endothelial cells seperately and then co-cultured on tubular scaffolds. When the films were seeded with endothelial cells it was observed that nanopatterns do not affect cell proliferation or initial cell alignment / however, they significantly influenced cell retention under shear (fluid flow). While 35 ± / 10 % of the cells were retained on unpatterned films, 75 ± / 4 % was retained on 332.5 nm patterned films and even higher, 91 ± / 5 % was retained on 650 nm patterned films. It was shown that nanopatterns as small as 332.5 nm could align the vascular smooth muscle cells (VSMC) and that alignment significantly improved mechanical properties. Presence of nanopatterns increased the ultimate tensile strength (UTS) from 0.55 ± / 0.11 on Day 0 to as much as 1.63 ± / 0.46 MPa on Day 75, a value within the range of natural arteries and veins. Similarly, Young& / #8217 / s Modulus values were ca. 4 MPa, again in the range of the natural vessels. Since the films would be ultimately rolled into tubes of collagen, nutrient transfer through the films is quite crucial. Diffusion coefficient for 4-acetaminophenol and oxygen through the collagen films were found to be 1.86 ± / 0.39 x 10-7 cm2.s-1 and 5.41 ± / 2.14 x 10-7 cm2.s-1, repectively in the unseeded form, and increased by 4 fold after cell seeding, which is comparable to that in natural tissues. When both cell types were co-cultured on the nanopatterned tubes (a both-side nanopatterned collagen tube), it was shown that on the outside of the tube VSMCs proliferated in an oriented manner and on the inside endothelial cells proliferated as a monolayer.
Therefore, this study showed that cell guidance enhances the mechanical properties of engineered vessels, and help overcome the two most important challenges in vascular tissue engineering / the need for adequate mechanical properties and continuous lining of endothelial cells even under physiological shear stress.
|
145 |
Computer controlled device to independently control flow waveform parameters during organ culture and biomechanical testing of mouse carotid arteries.Gazes, Seth Brian 27 October 2009 (has links)
Understanding the mechanisms of cardiovascular disease progression is essential in developing novel therapies to combat this disease that contributes to 1 in 3 deaths in the United States every year. Endothelial dysfunction and its effects on vessel growth and remodeling are key factors in the progression and localization of atherosclerosis. Much of our understanding in this area has come from in-vivo and in-vitro experiments however perfused organ culture systems provide an alternative approach. Organ culture systems can provide a more controlled mechanical and biochemical environment compared to in-vivo models. This study focused on furthering development of this organ culture model by introducing a novel device to produce flow waveforms at the high frequencies and low mean flows seen in the mouse model. The device is capable of monitoring pressure, flow, diameter, and nitric oxide release. Each individual mechanism in the system was integrated via a computer using a custom Labview interface. The performance of the device was characterized by developing physiologic, physiologic-oscillatory, low, low-oscillatory waveforms and sinusoidal waveforms at frequencies ranging from 1-10 Hz. Overall this system provides a robust model to test the effects of flow on various biological markers both in real-time and after culture.
|
146 |
Regulation of coronary smooth muscle intracellular Ca²⁺ levels in porcine models of hyperlipidemia, diabetic dyslipidemia, and exercise trainingWitczak, Carol A. January 2003 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 121-137).
|
147 |
Effects of endothelin-1 on coronary smooth muscle after chronic diabetes, atherogenic diet, and therapyLee, Dexter L. January 2000 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 152-178). Also available on the Internet.
|
148 |
MECHANISMS OF CYCLOOXYGENASE-2-DEPENDENT HUMAN AORTIC SMOOTH MUSCLE CELL PHENOTYPIC MODULATIONAdedoyin, Oreoluwa O 01 January 2014 (has links)
Abdominal aortic aneurysm (AAA) is a disease of the aorta characterized by pathological remodeling and progressive weakening of the vessel resulting in the increased risk of rupture and sudden death. In a mouse model of the disease induced by chronic Angiotensin II (AngII) infusion, progression of AAAs is associated with reduced differentiation of smooth muscle cells (SMCs) at the site of lesion development. In the mouse model, the effectiveness of cyclooxygenase-2 (COX-2) inhibition for attenuating AAA progression is associated with maintenance of a differentiated SMC phenotype. However, the safety of COX-2 inhibitors is currently in question due to the increased risk of adverse cardiovascular events. Thus, it is crucial to identify mediators downstream of COX-2 that may provide new targets for treatment of this disease.
Recent studies in humans and mouse models have suggested that the microsomal prostaglandin E synthase (mPGES-1) enzyme, which acts downstream of COX-2, may also be involved in the pathogenesis of the disease. We hypothesized that increased prostaglandin E2 (PGE2) synthesis resulting from the induction of both COX-2 and mPGES-1 may result in reduced differentiation of SMCs, and that disruption of this pathway would preserve the differentiated phenotype. To test this hypothesis, human aortic smooth muscle cells (hASMCs) were utilized to examine the effects of a variety of agents involved in AAA development and the COX-2 pathway.
My findings suggest that one of the effects of exposing hASMCs to AngII involves a specific induction of mPGES-1 expression. Furthermore, although different COX-2-derived products may have opposing effects, mPGES-1-derived PGE2 may be the primary prostanoid synthesized by SMCs which functions to attenuate differentiation. Therefore, mPGES-1 inhibition may provide inhibition of PGE2 that is more specific than COX-2 inhibitor treatment and may serve as a therapeutic target for attenuating AAA progression by maintaining a differentiated SMC phenotype.
|
149 |
Adaptations of coronary smooth muscle to chronic occlusion and exercise trainingHeaps, Cristine L. January 1999 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves [174]-186). Also available on the Internet.
|
150 |
Vascular calcification in rat cultured smooth muscle cells : a role for nitric oxideAlsabeelah, Nimer Fehaid N. January 2016 (has links)
The underlying inflammatory storm in renal or diabetic disease may induce expression of inducible nitric oxide synthase (iNOS). Similarly, expression of iNOS or nitric oxide (NO) production in vascular smooth muscle cells (VSMCs) in a calcifying environment, may promote vascular calcification (VC) (Zaragoza et al., 2006). However, emerging data suggests that NO generated by either endothelial nitric oxide synthase (eNOS) or iNOS may protect VSMCs from VC (Kanno et al., 2008). Thus, the role of NO and its associated enzymes in the development of VC is unclear. The aim of this study was to identify whether NO produced by iNOS regulates calcification in VSMCs, and to further understanding of potential mechanisms that may mediate the actions of NO/iNOS. A significant and sustained production of NO by iNOS, which peaked at day 3 and declined thereafter was found in rat aortic smooth muscle cells (RASMCs) that were preactivated with lipopolysaccharide (LPS; 100μg ml-1) and interferon gamma (IFN-γ;100U ml-1) in the presence of calcification buffer (CB) containing calcium chloride (CaCl2; 7mM) and β-glycerophosphate (β-GP; 7mM). This was associated with formation of hydroxyapatite crystals (HA) or calcification plaques, observed via alizarin red staining (ARS) and/or fourier transform infrared (FT-IR) analysis. However, when RASMCs were incubated with the iNOS inhibitor GW274150 at 10 μM, together with LPS + IFN-γ + CB, HA crystal formation was abolished. When RASMCs were pretreated with diethylenetriamine/nitric oxide adduct (NOC 18) at either 30 or 50 μM for an hour prior to addition of CB, to generate NO; calcium levels were elevated leading to form HA crystals. However, the elevation of calcium caused by the presence of NO generated via iNOS, did not result in phosphorylation of mitogen activated protein kinases (p38 MAPK), extracellular signal-regulated kinases (Erks), and protein kinase B. Furthermore, there was a reduction of Runx2 levels (pro-calcific factor) which could be another pro-calcific factor involved in this mechanism. These findings suggest that NO may indeed play a fundamental role in calcification, enhancing mineralisation of smooth muscle cells. Furthermore, the expression of iNOS/ NO appears to be enhanced under conditions that favour calcification and these together may contribute to enhanced calcification with potential detrimental consequences in vivo.
|
Page generated in 0.0679 seconds