• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 900
  • 337
  • 283
  • 183
  • 93
  • 78
  • 30
  • 21
  • 21
  • 12
  • 11
  • 10
  • 10
  • 7
  • 6
  • Tagged with
  • 2425
  • 406
  • 280
  • 215
  • 205
  • 161
  • 160
  • 160
  • 140
  • 138
  • 138
  • 131
  • 127
  • 121
  • 117
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Cylindrical Nanowires for Water Splitting and Spintronic Devices

Moreno Garcia, Julian 10 June 2021 (has links)
Energy enables basic and innovative services to reach a seemingly ever-growing population and when its generation costs are reduced or when its usage is optimized it has the greatest impact on the reduction of poverty. Furthermore, there is a pressing need to decouple energy generation from non-renewable and carbon-heavy sources which has led mayor economies to increase research efforts in these areas. This thesis discusses research on water oxidation using nanostructured iron oxide electrodes and current-induced magnetic domain wall motion in nickel/cobalt bi-segmented nanowires. These two fields may seem disparate at first glance, but are linked by such common theme: materials for energy, and more precisely, materials for energy conversion and economy. The work presented in this document aims also to reflect this theme by using widely available materials like iron and aluminum, and optimizing the methods to produce the final samples using the least resources possible. All samples were prepared by electroplating metals (iron, cobalt and nickel) into anodized alumina templates fabricated inhouse. For water oxidation, iron nanorods were integrated into an electrode and annealed in air, while nickel/cobalt nanowires were isolated and contacted individually to test for spintronics-related effects. Spintronic-based devices aim to reduce energy usage in nowadays microelectronic devices. The nanostructured iron oxide electrode showed its usefulness for water oxidation in a laboratory environment, making it an appropriate complement to other electrodes specially designed for water reduction in a photoelectrochemical cell. This two-electrode design, allows for hydrogen and oxygen to be produced at each electrode and therefore eases their separate collection for, e.g., fuel or fertilizers. On the other hand, this work presents one of the first experimental demonstration of current-induced domain wall motion in soft/hard cylindrical magnetic nanowires at zero applied external magnetic field. These kinds of experiments are expected to be the first of many which will allow researchers in the field to test for spintronic-relevant properties and interactions in cylindrical magnetic nanowires.
382

Streamwise Vortices in a Convex Wall Jet

PANDEY, ANSHUMAN 02 October 2019 (has links)
No description available.
383

Rethinking the wall

Lindblad, Mika January 2023 (has links)
Interior walls are one of the biggest environmental culprits in office renovations. With this project I want to consider a new way to radically alter the layout of public spaces without producing waste.  The purpose of this project is to investigate the potential for using brickwork as an inspiration for adaptable walls in offices and public spaces. I will explore how sustainable, lightweight materials such as hemp or wool can be used to create lightweight “bricks” with acoustic properties. These bricks are assembled in an accordion-like structure that allows the wall to be extended, folded and to create various shapes.  By rethinking the interior wall, I have created a circular system of semi-permanent walls that can transform offices, workspaces and meeting rooms at will, and allows for an affordable and sustainable alternative to costly and disruptive renovations. With a leasing system the walls are part of a circular business model. Using brickwork as an inspiration, and a way to connect innovations to architectural history, this project explores the possibilities inherent in the modularity of bricks.
384

An essay on the ethics of creation : Golem : Western Wall : Franz Kafka

Ratner, Bram David January 1992 (has links)
No description available.
385

The study of international crisis : a theoretical assessment and application to Berlin 1961

Kent, David Ernest. January 1975 (has links)
No description available.
386

A triboelectric-based method for rapid characterization of powders

Mehrtash, Hadi January 2021 (has links)
In this research, a tribocharging model based on the prominent condenser model was used in combination with an Eulerian-Lagrangian CFD model to simulate particle tribocharging in particle-laden flows. The influence of different parameters on particle-wall interactions during particle transport in a particle-laden pipe flow was elucidated. An artificial neural network was developed for predicting particle-wall collision numbers based on a database obtained through CFD simulations. The particle-wall collision number from the CFD model was validated against experimental data in the literature. The tribocharging and CFD models were coupled with the experimental tribocharging data to estimate the contact potential difference of powders, which is a function of contact surfaces' work functions and depends on the physicochemical properties of materials. While the contact potential difference between the particles and wall is an essential parameter in the tribocharging models, the accurate measurement of the property is a complex process requiring a highly controlled environment and special equipment. The results from this research also confirm that particle tribocharging is very much dependant on the particle-wall collision number influenced by various parameters, such as particle size and density, air velocity, and pipe dimensions. Plotting the experimentally measured charge-to-mass ratios against the calculated contact potential differences for samples with different protein contents uncovered a linear trend, which opens a novel approach for protein quantification of powders for a given particle size. Therefore, an algorithm is proposed for rapid quantification of protein content and particle size determination of samples during transport in particle-laden flows based on the triboelectric charge measurement. The algorithm requires a CFD-based artificial neural network to estimate the particle-wall interactions based on the hydrodynamic characteristics of the particles and flow systems. / Thesis / Master of Applied Science (MASc)
387

Fluid dynamics analyses of the intrahepatic portal vein tributaries using 7-T MRI / 7テスラMRIを用いた肝内門脈枝の流体解析

Oshima, Yu 24 November 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23573号 / 医博第4787号 / 新制||医||1054(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 中本 裕士, 教授 花川 隆, 教授 湊谷 謙司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
388

A Hybrid Mechanics-evolutionary Algorithm-derived Backbone Model for Unbonded Post-tensioned Concrete Block Shear Walls

Siam, Ali January 2022 (has links)
Unbonded post-tensioned concrete block (UPCB) shear walls are an effective seismic force resisting system due to their ability to contain expected damage attributed to their self-centering capabilities. A few design procedures were proposed to predict the in-plane flexural response of UPCB walls, albeit following only basic mechanics and/or extensive iterative methods. Such procedures, however, may not be capable of capturing the complex nonlinear relationships between different parameters that affect UPCB walls’ behavior or are tedious to be adopted for design practice. In addition, the limited datasets used to validate these procedures may render their accuracy and generalizability questionable, further hindering their adoption by practitioners and design standards. To address these issues, an experimentally-validated nonlinear numerical model was adopted in this study and subsequently employed to simulate 95 UPCB walls with different design parameters to compensate for the lack of relevant experimental data in the current literature. Guided by mechanics and using this database, an evolutionary algorithm, multigene genetic programming (MGGP), was adopted to uncover the relationships controlling the response of UPCB walls, and subsequently develop simplified closed-form wall behavior prediction expressions. Specifically, through integrating MGGP and basic mechanics, a penta-linear backbone model was developed to predict the load-displacement backbone for UPCB walls up to 20% strength degradation. Compared to existing predictive procedures, the prediction accuracy of the developed model and its closed-form nature are expected to enable UPCB wall adoption by seismic design standards and code committees. / Thesis / Master of Applied Science (MASc)
389

Determination of Seismic Earth Pressures on Retaining Walls Through Finite Element Analysis

Iannelli, Michael 01 December 2016 (has links) (PDF)
Seismic pressures on displacing or rigid retaining or basement walls have been derived based on the original work of Mononobe and Okabe, who used a shake table to calculate dynamic pressures of displacing retaining walls existing in cohesionless soils. Since this original work was done over eighty years ago, the results of Mononobe and Okabe, colloquially known as M-O theory, have been applied to different conditions, including non-displacing basement walls, as well as changes in soil properties. Since the original work of M-O, there have been numerous studies completed to verify the accuracy of the original calculation, most notably the work of Seed and Whitman (1970), Wood (1973), Sitar (Various), and Ostadan (2005). This has resulted in varying opinions for the accuracy of M-O theory, whether it is grossly unconservative or conservative, as well as its effectiveness for situations where the wall does not displace enough to engage active soil conditions. This study examines (3) different wall cases, a cantilever retaining wall, gravity retaining wall, and rigid basement wall, through an implcit finite element analysis, under simple sinusoidal boundary accelerations. The soil is modeled using the Drucker-Prager model for elastic-plastic properties. The dynamic pressure increment is observed for different driving frequencies, with the anticipation that an in-phase and out of phase response between the soil and structure will be achieved, resulting in both lower and higher than M-O pressure values.
390

Laminar and Transitional Flow disturbances in Diseased and Stented Arteries

Karri, Satyaprakash Babu 30 September 2009 (has links)
Cardiovascular diseases (CVD) are the number one causes of death in the world. According to the world Health Organization (WHO) 17.5 million people died from cardiovascular disease in 2005, representing 30 % of all global deaths . Of these deaths, 7.6 million were due to heart attacks and 5.7 million due to stroke. If current trends are allowed to continue, by 2015 an estimated 20 million people will die annually from cardiovascular disease. The trends are similar in the United States where on an average 1 person dies every 37 seconds due to CVD. In 2008 an estimated 770,000 Americans will experience a new heart attack (coronary stenosis) and 600,000 will experience a first stroke. Although the exact causes of cardiovascular disease are not well understood, hemodynamics has been long thought to play a primary role in the progression of cardiovascular disease and stroke. There is strong evidence linking the fluid mechanical forces to the transduction mechanisms that trigger biochemical response leading to atherosclerosis or plaque formation. It is hypothesized that the emergence of abnormal fluid mechanical stresses which dictate the cell mechanotransduction mechanisms and lead to disease progression is dependent on the geometry and compliance of arteries, and pulsatility of blood flow. Understanding of such hemodynamic regulation in relation to atherosclerosis is of significant clinical importance in the prediction and progression of heart disease as well as design of prosthetic devices such as stents. The current work will systematically study the effects of compliance and complex geometry and the resulting fluid mechanical forces. The objective of this work is to understand the relationship of fluid mechanics and disease conditions using both experimental and computational methods where (a) Compliance effects are studied in idealized stenosed coronary and peripheral arteries using Digital Particle Image Velocimetry (DPIV), (b) Complex geometric effects of stented arteries with emphasis on its design parameters is investigated using CFD, Also (c) a novel method to improve the accuracy of velocity gradient estimation in the presence of noisy flow fields such as in DPIV where noise is inherently present is introduced with the objective to improve accuracy in the estimation of WSS, which are of paramount hemodynamic importance. The broad impact of the current work extends to the understanding of fundamental physics associated with arterial disease progression which can lead to better design of prosthetic devices, and also to better disease diagnostics. / Ph. D.

Page generated in 0.0245 seconds