81 |
Characterization of Integrin-Linked Kinase functions in cell wall immunityCooley, Emily 07 August 2020 (has links)
Plants have several defense systems used as protection from environmental stressors, and the plant cell wall (CW) is considered the “frontline” during attack. The CW is a complex structure essential for growth and development and is composed of components such as cellulose, polysaccharides, pectin, and lignin. Lignin is the central source of strength for the CW and helps form a water-impermeable barrier for defense. The extent of plant CW defense, immunity, and the components involved still need further investigation. Integrin-Linked Kinases (ILKs), a subfamily of Raf-like kinases (RAFs), are thought to participate in signal-processing pathways of the CW and plasma membrane via integrin-like receptors (ILRs). Histological characterization was used to observe how ILKs participate in CW surveillance, and an analysis revealed that ILK1 and ILK4 are negative regulators of isoxaben-induced lignin accumulation, while ILK5ox is positive. Collectively, ILK1, ILK4, and ILK5 play important roles in the modulation of CW structure.
|
82 |
Comparative characterization of Arabidopsis Subfamily III beta-galactosidasesGantulga, Dashzeveg 16 January 2009 (has links)
The Arabidopsis genome encodes 17 putative beta-galactosidases belonging to Glycosyl Hydrolase (GH) family 35, which have been classified into seven subfamilies based on sequence homology. The largest of these, Subfamily III, consists of six genes, Gal-1 (At3g13750), Gal-2 (At3g52840), Gal-3 (At4g36360), Gal-4 (At5g56870), Gal-5 (At1g45130), and Gal-12 (At4g26140) that share 60-81% sequence identity at the amino acid level. All six proteins have a signal peptide that may target them to the cell exterior.
We report purification and biochemical characterization of all six members of Subfamily III, each expressed as a recombinant protein in Pichia pastoris and one also in native form, purified from Arabidopsis leaves, with a special emphasis on substrate specificities. Organ specific expression of the six Gal genes was examined by analysis of the microarray databases and by semi-quantitative RT-PCR. The relative abundance and size of the Gal-1, Gal-2, Gal-5, and Gal-12 proteins was studied by immunoblotting using isoform-specific anti-peptide antibodies. The protein expression patterns of the Gal genes were generally consistent with microarray and RT-PCR data, though some discrepancies were observed suggesting distinct mechanisms of regulation for transcription and translation. Localization of total beta-galactosidase activity was visualized using the substrate, 5-bromo-4-chloro-3-indolyl-beta-D-galatopyranoside (X-Gal), to stain whole plants. Subcellular localization of the four isoforms examined by immuno-dotblotting and western blotting showed that Gal-1, Gal-2, Gal-5 and Gal-12 are present in apoplastic and cell wall bound protein extracts. Immuno-EM analysis of Gal-1 and Gal-12 showed that these proteins are localized in the cell walls of vascular and epidermal tissues in mature root. Taken together, the biochemical properties, expression patterns, and subcellular localization of these isozymes indicate that the Subfamily III beta-galactosidases all have potential functions in restructuring the cell wall during plant growth and development. / Ph. D.
|
83 |
requiem: a chapel for blacksburg virginiaHillery, Alice 25 July 2001 (has links)
The wall in Architecture is primary and paramount. In a hierarchical comparison with other elements, the wall is dominant because of the inherent potential housed within to inform our experience of place. It does more than divide what is in from what is out. It is where Architecture begins its presencing.
The juxtaposition of man within nature is always violent. In this role as reconciliator of form and environment the wall shapes our perception of being in nature. The architecture of the wall is the spatial record of the drama between interior and exterior forces acting upon it.
We construct walls to keep out from becoming in. At the same time, the wall is where a controlled out is allowed in. What penetrates our world, must come through the wall. The wall must be made to accept openings, carry loads, or transfer that load elsewhere. The wall is a deliberate or delicate connection to the earth. The wall accepts, reflects, mediates, or rejects all that it is confronted with.
Architecturally, permanence is expressed by means of the wall. By following the wall, one can understand the configuration of the internal vessel, its perimeter, its zones of focus, and the relationship of parts to the whole. "By knowing the limits of something, you really know something. Then you know its order, because you know its limits...but if you don't know its limits, then you don't know its order..." L.Kahn / Master of Architecture
|
84 |
INSERTION: juxtapositioning of the new and the existingMali, Darshana Chandrakant 20 December 2006 (has links)
Introduction of new into an existing condition stimulates a dialogue between the two. The new and the existing are juxtaposed. The new structure penetrates into the existing structure. These INSERTIONS are the nexus which connects the new and the existing. The intersections of the new and the existing are the crucial junctions which are explored throughout the process. The insertions are made with a creating a space around it, the VOID which bridges the two eras but retains their distinct characteristics through CONTRASTS. / Master of Architecture
|
85 |
Wall Modeled Large Eddy Simulation of Flow over a Wall Mounted HumpDilip, Deepu 02 July 2014 (has links)
Large Eddy Simulation (LES) is a relatively more accurate and reliable alternative to solution of Reynolds Averaged Navier Stokes (RANS) equations in simulating complex turbulent flows at a lesser computational cost than a direct numerical simulation (DNS). However, LES of wall-bounded flows still requires a very high grid resolution in the inner wall layer making its widespread use difficult. Different attempts have been made in the past time to overcome this problem by modeling the near wall turbulence instead of resolving it. One such approach is a two-layer wall model that solves for a reduced one-dimensional equation in the inner wall layer, while solving for the filtered Navier-Stokes equations in the outer layer. The use of such a model allows for a coarser grid resolution than a wall resolved LES.
This work validates the performance of a two-layer wall model developed for an arbitrary body fitted non-orthogonal grid in the flow over a wall mounted hump at Reynolds number 9.36x105. The wall modeled large eddy simulation (WMLES) relaxes the grid requirement compared to a wall resolved LES (WRLES) by allowing the first off-wall grid point to be placed at a y+ of approximately 20-40. It is found that the WMLES results are general good agreement with WRLES and experiments. Surface pressure coefficient, skin friction, mean velocity profiles, and the reattachment location compare very well with experiment. The WMLES and WRLES exhibit some under prediction of the peak values in the turbulent quantities close to the reattachment location, with better agreement with the experiment in the separated region. In contrast, a simulation that did not employ the wall model on the grid used for WMLES failed to predict flow separation and showed large discrepancies with the experimental data. In addition to the relaxation of the grid requirement in the wall normal direction, it was also observed that the wall model allowed a reduction in the number of computational cells in the span-wise direction by half. However an LES calculation on a grid with reduced number of cells in span-wise direction turned unstable almost immediately, thereby highlighting the effectiveness of the wall model. Besides reducing the number of grid points in the spatial domain, the relaxed grid resolution for the WMLES also permitted the use of a larger time step. This resulted in an order of magnitude reduction in the total CPU time relative to WRLES. / Master of Science
|
86 |
An Extended Calibration and Validation of a Slotted-Wall Transonic Wall-Interference Correction Method for the National Transonic FacilityBailey, Matthew Marlando 26 November 2019 (has links)
Correcting wind tunnel data for wall interference is a critical part of relating the acquired data to a free-air condition. Accurately determining and correcting for the interference caused by the presence of boundaries in wind tunnels can be difficult especially for facilities employing ventilated boundaries. In this work, three varying levels of ventilation at the National Transonic Facility (NTF) were modeled and calibrated with a general slotted wall (GSW) linear boundary condition to validate the computational model used to determine wall interference corrections. Free-air lift, drag, and pitching moment coefficient predictions were compared for a range of lift production and Mach conditions to determine the uncertainty in the corrections process and the expected domain of applicability.
Exploiting a previously designed statistical validation method, this effort accomplishes the extension of a calibration and validation for a boundary pressure wall interference corrections method. The foundational calibration and validation work was based on blockage interference only, while this present work extends the assessment of the method to encompass blockage and lift interference production. The validation method involves the establishment of independent cases that are then compared to rigorously determine the degree to which the correction method can converge free-air solutions for differing interference fields. The process involved first establishing an empty-tunnel calibration to gain both a centerline Mach profile of the facility at various ventilation settings, and to gain a baseline wall pressure signature undisturbed by a test article. The wall boundary condition parameters were then calibrated with a blockage and lift interference producing test article, and final corrected performance coefficients were compared for varying test section ventilated configurations to validate the corrections process and assess its domain of applicability. During the validation process discrimination between homogeneous and discrete implementations of the boundary condition was accomplished and final results indicated comparative strength in the discrete implementation's ability to capture experimental flow physics.
Final results indicate that a discrete implementation of the General Slotted Wall boundary condition is effective in significantly reducing variations caused by differing interference fields. Corrections performed with the discrete implementation of the boundary condition collapse differing measurements of lift coefficient to within 0.0027, drag coefficient to within 0.0002, and pitching moment coefficient to within 0.0020. / Doctor of Philosophy / The purpose of conducting experimental tests in wind tunnels is often to acquire a quantitative measure of test article aerodynamic characteristics in such a way that those specific characteristics can be accurately translated into performance characteristics of the real vehicle that the test article intends to simulate. The difficulty in accurately simulating the real flow problem may not be readily apparent, but scientists and engineers have been working to improve this desired equivalence for the better part of the last half-century.
The primary aspects of experimental aerodynamics simulation that present difficulty in attaining equivalence are: geometric fidelity, accurate scaling, and accounting for the presence of walls. The problem of scaling has been largely addressed by adequately matching conditions of similarity like compressibility (Mach number), and viscous effects (Reynolds number). However, accounting for the presence of walls in the experimental setup has presented ongoing challenges for ventilated boundaries; these challenges include difficulties in the correction process, but also extend into the determination of correction uncertainties.
Exploiting a previously designed statistical validation method, this effort accomplishes the extension of a calibration and validation effort for a boundary pressure wall interference corrections method. The foundational calibration and validation work was based on blockage interference only, while this present work extends the assessment of the method to encompass blockage and lift interference production. The validation method involves the establishment of independent cases that are then compared to rigorously determine the degree to with the correction method can converge free-air solutions for differing interference scenarios. The process involved first establishing an empty-tunnel calibration to gain both a centerline Mach profile of the facility at various ventilation settings, and to gain a baseline wall pressure signature undisturbed by a test article. The wall boundary condition parameters were then calibrated with a blockage and lift interference producing test article, and final corrected performance coefficients were compared for varying test section ventilated configurations to validate the corrections process and assess its domain of applicability. During the validation process discrimination between homogeneous and discrete implementations of the boundary condition was accomplished and final results indicated comparative strength in the discrete implementation's ability to capture experimental flow physics.
Final results indicate that a discrete implementation of the General Slotted Wall boundary condition is effective in significantly reducing variations caused by differing interference fields. Corrections performed with the discrete implementation of the boundary condition collapse differing measurements of lift coefficient to within 0.0027, drag coefficient to within 0.0002, and pitching moment coefficient to within 0.0020.
|
87 |
Red Wall: a study of placemakingmcinerney, sarah anne 16 February 2006 (has links)
a small house... in which the details can be explored thoroughly with an understanding of construction through experience, detail, and context. / Master of Architecture
|
88 |
Damage mitigation strategies for non-structural infill walls.Tasligedik, Ali Sahin January 2014 (has links)
In most design codes, infill walls are considered as non-structural elements and thus are typically neglected in the design process. The observations made after major earthquakes (Duzce 1999, L’Aquila 2009, Christchurch 2011) have shown that even though infill walls are considered to be non-structural elements, they interact with the structural system during seismic actions. In the case of heavy infill walls (i.e. clay brick infill walls), the whole behaviour of the structure may be affected by this interaction (i.e. local or global structural failures such as soft storey mechanism). In the case of light infill walls (i.e. non-structural drywalls), this may cause significant economical losses. To consider the interaction of the structural system with the ‘non-structural ’infill walls at design stage may not be a practical approach due to the complexity of the infill wall behaviour. Therefore, the purpose of the reported research is to develop innovative technological solutions and design recommendations for low damage non-structural wall systems for seismic actions by making use of alternative approaches.
Light (steel/timber framed drywalls) and heavy (unreinforced clay brick) non-structural infill wall systems were studied by following an experimental/numerical research programme. Quasi-static reverse cyclic tests were carried out by utilizing a specially designed full scale reinforced concrete frame, which can be used as a re-usable bare frame. In this frame, two RC beams and two RC columns were connected by two un-bonded post tensioning bars, emulating a jointed ductile frame system (PRESSS technology). Due to the rocking behaviour at the beam-column joint interfaces, this frame was typically a low damage structural solution, with the post-tensioning guaranteeing a linear elastic behaviour. Therefore, this frame could be repeatedly used in all of the tests carried out by changing only the infill walls within this frame. Due to the linear elastic behaviour of this structural bare frame, it was possible to extract the exact behaviour of the infill walls from the global results. In other words, the only parameter that affected the global results was given by the infill walls.
For the test specimens, the existing practice of construction (as built) for both light and heavy non-structural walls was implemented. In the light of the observations taken during these tests, modified low damage construction practices were proposed and tested. In total, seven tests were carried out:
1) Bare frame , in order to confirm its linear elastic behaviour.
2) As built steel framed drywall specimen FIF1-STFD (Light)
3) As built timber framed drywall specimen FIF2-TBFD (Light)
4) As built unreinforced clay brick infill wall specimen FIF3-UCBI (Heavy)
5) Low damage steel framed drywall specimen MIF1-STFD (Light)
6) Low damage timber framed drywall specimen MIF2-TBFD (Light)
7) Low damage unreinforced clay brick infill wall specimen MIF5-UCBI (Heavy)
The tests of the as built practices showed that both drywalls and unreinforced clay brick infill walls have a low serviceability inter-storey drift limit (0.2-0.3%). Based on the observations, simple modifications and details were proposed for the low damage specimens. The details proved to be working effectively in lowering the damage and increasing the serviceability drift limits. For drywalls, the proposed low damage solutions do not introduce additional cost, material or labour and they are easily applicable in real buildings. For unreinforced clay brick infill walls, a light steel sub-frame system was suggested that divides the infill panel zone into smaller individual panels, which requires additional labour and some cost. However, both systems can be engineered for seismic actions and their behaviour can be controlled by implementing the proposed details. The performance of the developed details were also confirmed by the numerical case study analyses carried out using Ruaumoko 2D on a reinforced concrete building model designed according to the NZ codes/standards. The results have confirmed that the implementation of the proposed low damage solutions is expected to significantly reduce the non-structural infill wall damage throughout a building.
|
89 |
A Study of Adobe Wall Moisture Profiles and the Resulting Effects on Matched Illumination Waveforms in Through-The-Wall Radar ApplicationsPrice, Steven Ryan 14 August 2015 (has links)
In this dissertation, methods utilizing matched illumination theory to optimally design waveforms for enhanced target detection and identification in the context of through-the-wall radar (TWR) are explored. The accuracy of assumptions made in the waveform design process is evaluated through simulation. Additionally, the moisture profile of an adobe wall is investigated, and it is shown that the moisture profile of the wall will introduce significant variations in the matched illumination waveforms and subsequently, affect the resulting ability of the radar system to correctly identify and detect a target behind the wall. Experimental measurements of adobe wall moisture and corresponding dielectric properties confirms the need for accurate moisture profile information when designing radar waveforms which enhance signal-to-interference-plus-noise ratio (SINR) through use of matched illumination waveforms on the wall/target scenario. Furthermore, an evaluation of the ability to produce an optimal, matched illumination waveform for transmission using simple, common radar systems is undertaken and radar performance is evaluated.
|
90 |
Parametric Analysis Of Inelastic Interaction In Frame-wall Structural SystemsSeckiner, Soner 01 September 2011 (has links) (PDF)
The purpose of this thesis is to investigate the inelastic action in the reinforced concrete frame-wall structures analytically and with that analysis to follow the plastic formation of the structure. For this purpose, six mid-rise reinforced concrete buildings with frame-wall are modeled and analyzed to understand the effect of the height and base shear force ratio of the wall on the nonlinear interaction between reinforced concrete wall and frame members under static lateral loads and ground motion excitations. The parametric analysis is conducted by assuming planar response of the buildings under loadings.
The buildings are generated considering the limit design concept suggested by Turkish Earthquake Code 2007 and Turkish Standards TS500, and the frame-wall members are modeled by using spread plasticity elements and fiber discretization of sections. In the analysis stage, each element section is divided into confined and unconfined regions for detailed modeling of the building by using OpenSEES nonlinear finite element program. Two dimensional analyses are conducted under static and dynamic loadings. For static pushover analyses, three different lateral load cases (Triangular, Uniform and First-Mode Lateral Load Patterns) are considered. For dynamic analyses, eight different ground motions are used. These ground motions are scaled to the corresponding design response spectrum suggested by Turkish Earthquake Code 2007 by using RSPMATCH program. Using the result of the complex and simplified analyses, inter-story drift ratios, plastic rotations and internal force distributions of the buildings are investigated.
|
Page generated in 0.0318 seconds