• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2496
  • 431
  • 348
  • 299
  • 95
  • 95
  • 95
  • 95
  • 95
  • 89
  • 50
  • 32
  • 32
  • 30
  • 19
  • Tagged with
  • 4621
  • 510
  • 443
  • 411
  • 399
  • 373
  • 350
  • 324
  • 313
  • 286
  • 286
  • 240
  • 223
  • 221
  • 217
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

On the development of water waves generated by a submerged moving bodyin a two-layer fluid system

Yang, Jiazhen, 楊嘉楨. January 2008 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
302

Correlation of P-wave velocity and weathered

Lam, Wan, 林蘊 January 2004 (has links)
published_or_final_version / Applied Geosciences / Master / Master of Science
303

Stability and interaction of waves in coupled nonlinear Schrödinger type systems

Chiu, Hok-shun., 趙鶴淳. January 2009 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
304

Shear wave attenuation in unconsolidated laboratory sediments

Brunson, Burlie A. 23 June 1983 (has links)
Shear wave attenuation measurements were made using ceramic bimorph transducers to excite transverse vibrations in a cylindrical column of unconsolidated sediment. Three different water-saturated sediments were used in an attempt to determine the effects of grain shape and sorting on the frequency dependence of attenuation. The mean grain size of the sediments was held constant while the grain shape and size distributions were varied. The sediment assemblages used in the attenuation measurements included a moderately-sorted angular quartz sand, a well-sorted angular quartz sand, and well-sorted spherical glass beads. The moderately-sorted sand showed the greatest attenuation over the measurement frequency range of 1 to 20 kHz. The well-sorted sand and the glass beads showed generally lower attenuation with the beads being the least lossy propagation medium. All three sediments showed evidence of viscous attenuation due to fluid-to-grain relative motion. This mechanism leads to a non-linear relationship between attenuation and frequency. Sediment physical properties were measured for use as inputs to a theoretical attenuation model based on the Biot theory of propagation of waves in porous media. The model allowed attenuation versus frequency predictions to be made for each of the three sediment assemblages. The resultant comparisons between the measured and predicted attenuations demonstrated the importance of using measured model inputs obtained under controlled laboratory conditions when theoretical model capabilities are being evaluated. The model comparison shed significant light on the ability of this particular model to predict shear wave attenuation in non-ideal sediments. / Graduation date: 1984
305

Waves and balanced mean flows in the atmosphere

Buehler, Oliver January 1996 (has links)
No description available.
306

The investigation of signal processing techniques when applied to visually evoked potential propagation path analysis

Heneidy, Hamdy Soliman January 1991 (has links)
No description available.
307

The higher order dynamics of progressive waves

Swan, Christopher January 1987 (has links)
No description available.
308

Bent-ray travel-time tomography and migration without ray tracing

Ecoublet, Philippe January 1995 (has links)
No description available.
309

Theory of multiwave mixing in two- and three-level media.

An, Sunghyuck. January 1988 (has links)
This dissertation presents theories of multiwave mixing in two- and three-level media. The first part of the dissertation treats the semiclassical theories in two-level media. Chapter 2 gives the simple semiclassical theory of four-wave mixing when the two pump frequences differ by more than the reciprocal of the population-difference lifetime. This difference washes out the pump spatial holes as well as one of the two reflection gratings. We compare the results to the degenerate treatment of Abrams and Lind and find significant differences in the reflection coefficient spectra. Chapter 3 presents the semiclassical theory of multiwave in a squeezed vacuum characterized by unequal in-phase and in-quadrature dipole decay times. For a highly squeezed vacuum, we find sharp resonances in both probe absorption and reflection coefficients, which provide sensitive ways to measure the amount of squeezing in the vacuum. The second part of the dissertation treats the quantum theories in two- and three-level media. Chapter 4 develops the fourth-order quantum theory of multiwave mixing to describe the effects of sidemode saturation in two-level media. We derive explicit formulas for the fourth-order quantum coefficients and show that the fourth-order quantum theory reproduces the third-order semiclassical coefficient obtained by truncating a continued fraction. We apply the results to cavity problems and find significant differences in the sideband spectra given by the second- and fourth-order treatments, particularly as the sidemode approaches the laser threshold. The final chapter presents a quantum theory of multiwave mixing in three-level cascades with a two-photon pump. The explicit formulas for the resonance fluorescence spectrum and the quantum combination-tone source term are derived. The theory is applied to the generation of squeezed states of light. We find almost perfect squeezing for some strong pump intensities and good broad-band squeezing for low pump intensities.
310

A theoretical study of nonlinear guided waves

Gubbels, Monica Ann, 1964- January 1988 (has links)
The effect of linear absorption on TE0 nonlinear guided waves and the effect of linear absorption, input-beam misalignment and nonlinear saturation on soliton emission from a nonlinear waveguide have been numerically investigated using the beam propagation method. In the first case the distribution of the absorption is found to have a dramatic effect on the propagation of the nonlinear guided waves. In the second case results reminiscent of the lossless case are found to survive in the presence of these complications.

Page generated in 0.0364 seconds