• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 12
  • 12
  • 7
  • 7
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laboratories Conducting Soil, Plant, Feed, or Water Testing

Schalau, Jeff 05 1900 (has links)
2 pp. / This sheet contains the mailing information for the labs that conduct soil, plant, feed or water testing.
2

Obtaining a Water Sample for Bacterial Analysis

Farrell-Poe, Kitt 03 1900 (has links)
2 pp. / 1. Drinking Water Wells; 2. Private Water Well Components; 3. Do Deeper Wells Mean Better Water; 4. Maintaining Your Private Well Water System; 5. Private Well Protection; 6. Well Water Testing and Understanding the Results; 7. Obtaining a Water Sample for Bacterial Analysis; 8. Microorganisms in Private Water Wells; 9. Lead in Private Water Wells; 10. Nitrate in Private Water Wells; 11.Arsenic in Private Water Wells; 12. Matching Drinking Water Quality Problems to Treatment Methods; 13. Commonly Available Home Water Treatment Systems; 14. Hard Water: To Soften or Not to Soften; 15. Shock Chlorination of Private Water Wells / This fact sheet is one in a series of fifteen for private water well owners. The one- to four-page fact sheets will be assembled into a two-pocket folder entitled Private Well Owners Guide. The titles will also be a part of the Changing Rural Landscapes project whose goal is to educate exurban, small acreage residents. The authors have made every effort to align the fact sheets with the proposed Arizona Cooperative Extension booklet An Arizona Well Owners Guide to Water Sources, Quality, Testing, Treatment, and Well Maintenance by Artiola and Uhlman. The private well owner project was funded by both the University of Arizonas Water Sustainability Program-Technology and Research Initiative Fund and the USDA-CSREES Region 9 Water Quality Program.
3

Microorganisms in Private Water Wells

Farrell-Poe, Kitt, Jones-McLean, Lisa, McLean, Scott 03 1900 (has links)
3 pp. / 1. Drinking Water Wells; 2. Private Water Well Components; 3. Do Deeper Wells Mean Better Water; 4. Maintaining Your Private Well Water System; 5. Private Well Protection; 6. Well Water Testing and Understanding the Results; 7. Obtaining a Water Sample for Bacterial Analysis; 8. Microorganisms in Private Water Wells; 9. Lead in Private Water Wells; 10. Nitrate in Private Water Wells; 11.Arsenic in Private Water Wells; 12. Matching Drinking Water Quality Problems to Treatment Methods; 13. Commonly Available Home Water Treatment Systems; 14. Hard Water: To Soften or Not to Soften; 15. Shock Chlorination of Private Water Wells / This fact sheet is one in a series of fifteen for private water well owners. The one- to four-page fact sheets will be assembled into a two-pocket folder entitled Private Well Owners Guide. The titles will also be a part of the Changing Rural Landscapes project whose goal is to educate exurban, small acreage residents. The authors have made every effort to align the fact sheets with the proposed Arizona Cooperative Extension booklet An Arizona Well Owners Guide to Water Sources, Quality, Testing, Treatment, and Well Maintenance by Artiola and Uhlman. The private well owner project was funded by both the University of Arizonas Water Sustainability Program-Technology and Research Initiative Fund and the USDA-CSREES Region 9 Water Quality Program.
4

Nitrate in Private Water Wells

Farrell-Poe, Kitt, Jones-McLean, Lisa, McLean, Scott 03 1900 (has links)
3 pp. / 1. Drinking Water Wells; 2. Private Water Well Components; 3. Do Deeper Wells Mean Better Water; 4. Maintaining Your Private Well Water System; 5. Private Well Protection; 6. Well Water Testing and Understanding the Results; 7. Obtaining a Water Sample for Bacterial Analysis; 8. Microorganisms in Private Water Wells; 9. Lead in Private Water Wells; 10. Nitrate in Private Water Wells; 11.Arsenic in Private Water Wells; 12. Matching Drinking Water Quality Problems to Treatment Methods; 13. Commonly Available Home Water Treatment Systems; 14. Hard Water: To Soften or Not to Soften; 15. Shock Chlorination of Private Water Wells / This fact sheet is one in a series of fifteen for private water well owners. The one- to four-page fact sheets will be assembled into a two-pocket folder entitled Private Well Owners Guide. The titles will also be a part of the Changing Rural Landscapes project whose goal is to educate exurban, small acreage residents. The authors have made every effort to align the fact sheets with the proposed Arizona Cooperative Extension booklet An Arizona Well Owners Guide to Water Sources, Quality, Testing, Treatment, and Well Maintenance by Artiola and Uhlman. The private well owner project was funded by both the University of Arizonas Water Sustainability Program-Technology and Research Initiative Fund and the USDA-CSREES Region 9 Water Quality Program.
5

Lead in Private Water Wells

Farrell-Poe, Kitt, Jones-McLean, Lisa, McLean, Scott 03 1900 (has links)
2 pp. / 1. Drinking Water Wells; 2. Private Water Well Components; 3. Do Deeper Wells Mean Better Water; 4. Maintaining Your Private Well Water System; 5. Private Well Protection; 6. Well Water Testing and Understanding the Results; 7. Obtaining a Water Sample for Bacterial Analysis; 8. Microorganisms in Private Water Wells; 9. Lead in Private Water Wells; 10. Nitrate in Private Water Wells; 11.Arsenic in Private Water Wells; 12. Matching Drinking Water Quality Problems to Treatment Methods; 13. Commonly Available Home Water Treatment Systems; 14. Hard Water: To Soften or Not to Soften; 15. Shock Chlorination of Private Water Wells / This fact sheet is one in a series of fifteen for private water well owners. The one- to four-page fact sheets will be assembled into a two-pocket folder entitled Private Well Owners Guide. The titles will also be a part of the Changing Rural Landscapes project whose goal is to educate exurban, small acreage residents. The authors have made every effort to align the fact sheets with the proposed Arizona Cooperative Extension booklet An Arizona Well Owners Guide to Water Sources, Quality, Testing, Treatment, and Well Maintenance by Artiola and Uhlman. The private well owner project was funded by both the University of Arizonas Water Sustainability Program-Technology and Research Initiative Fund and the USDA-CSREES Region 9 Water Quality Program.
6

Arsenic in Private Water Wells

Farrell-Poe, Kitt 03 1900 (has links)
3 pp. / 1. Drinking Water Wells; 2. Private Water Well Components; 3. Do Deeper Wells Mean Better Water; 4. Maintaining Your Private Well Water System; 5. Private Well Protection; 6. Well Water Testing and Understanding the Results; 7. Obtaining a Water Sample for Bacterial Analysis; 8. Microorganisms in Private Water Wells; 9. Lead in Private Water Wells; 10. Nitrate in Private Water Wells; 11.Arsenic in Private Water Wells; 12. Matching Drinking Water Quality Problems to Treatment Methods; 13. Commonly Available Home Water Treatment Systems; 14. Hard Water: To Soften or Not to Soften; 15. Shock Chlorination of Private Water Wells / This fact sheet is one in a series of fifteen for private water well owners. The one- to four-page fact sheets will be assembled into a two-pocket folder entitled Private Well Owners Guide. The titles will also be a part of the Changing Rural Landscapes project whose goal is to educate exurban, small acreage residents. The authors have made every effort to align the fact sheets with the proposed Arizona Cooperative Extension booklet An Arizona Well Owners Guide to Water Sources, Quality, Testing, Treatment, and Well Maintenance by Artiola and Uhlman. The private well owner project was funded by both the University of Arizonas Water Sustainability Program-Technology and Research Initiative Fund and the USDA-CSREES Region 9 Water Quality Program.
7

Detection of Environmental Contaminants in Water Utilizing Raman Scanning for E. coli Phenotype Changes

Flick, Hunter James 30 May 2019 (has links)
Raman spectroscopy and its counterpart surface-enhanced Raman scattering (SERS) have proven to be effective methods for detecting miniscule changes in the phenotypes of E. coli and other single-celled organisms to aid in the detection of new strains for industrial use and discovery of new antibiotics. The purpose of this study is to develop a method to quickly and accurately detect contaminants in water samples through phenotype changes in E. coli measured through SERS. Contaminated Luria-Bertani (LB) media was inoculated with LB with an OD600 of 1, grown for two hours, and then dried on a flat piece of aluminum foil. These samples were then Raman scanned and processed to determine contaminant-induced changes to the phenotypes of the E. coli. Three types of tests were run to show the effectiveness of this method: single-component, multicomponent, and impure water sources. In single-component tests, it was found that differences due to NaCl contamination could be detected to 5.0E-9 weight percent (wt %), ethanol (EtOH) to 5.0E-7 volumetric percent (% v/v), citric acid (CA) to 2.8E-4 wt %, acetic acid (AA) to 2.6E-4 wt %, kanamycin to 2.5E-11 wt %, ampicillin to 2.5E-10 wt %, CoCl2 to trace amounts, and silver nanoparticles (AgNP) to 5.2E-7 wt %. Many of these are below the detection limits of analytical instrumentation, but their effects on E. coli phenotypes were detectable by Raman spectroscopy. Multicomponent tests showed that in a mixture, the most toxic or most concentrated contaminants have the most effect on cell phenotype. However, it was shown that similar concentrations of similar contaminants may be difficult to discern with current methods. This behavior was also seen in the impure water samples, showing that tap water behaves the closest to a DI control, followed by running water, and finally stagnant bodies. This new method of monitoring E. coli phenotypes with Raman spectroscopy as a biosensor shows promise for the fast, portable, and accurate determination of environmental contaminants with a broad-spectrum and very low detection limits. / Master of Science / Recently, Raman spectroscopy and an enhanced version called surface-enhanced Raman scattering (SERS) have shown promise in showing the effects of a cell’s environment on how it expresses genes and what chemical compounds it produces to survive. It does this through reading the chemical signature it gives off due to these changes, and these readings have been used for showing the effects of antibiotics, finding varieties that are resistant to toxic byproducts of their activities, and as biosensors. The study outlined in this thesis aims to develop a test utilizing SERS to see the reactions of a non-pathogenic strain of E. coli to contaminants in their media and determine their identity. This test was run for three types of contaminated samples: one contaminant, three contaminants, and tests using impure water from a sink tap, a pond, and a stream. For the single contaminants, eight types were tested; NaCl, ethanol, citric acid, acetic acid (AA), kanamycin, ampicillin, CoCl2, and silver nanoparticles. Detection limits for all contaminants were found, with the lowest detectable concentrations all falling below or matching detection limits of common methods. The lowest detectable concentrations came from kanamycin and CoCl2, at 2.5E-11 weight percent and in amounts which are considered beneficial to the environment, respectively. The three-contaminant test shows that it is possible to pinpoint which contaminants are having the highest effect, though if contaminants are similar in nature and in similar concentrations, it may be difficult to pinpoint which is causing the effect. In the final test, similarity of water sources to pure water were found, with tap water being closest, followed by stream water and the most different being pond water. It was also found that pond water and stream water were closest in behavior, showing the power of this method in differentiating sources from each other.
8

Well Water Testing and Understanding the Results

Farrell-Poe, Kitt, Jones-McLean, Lisa, McLean, Scott 04 1900 (has links)
6 pp. / 1. Drinking Water Wells; 2. Private Water Well Components; 3. Do Deeper Wells Mean Better Water; 4. Maintaining Your Private Well Water System; 5. Private Well Protection; 6. Well Water Testing and Understanding the Results; 7. Obtaining a Water Sample for Bacterial Analysis; 8. Microorganisms in Private Water Wells; 9. Lead in Private Water Wells; 10. Nitrate in Private Water Wells; 11.Arsenic in Private Water Wells; 12. Matching Drinking Water Quality Problems to Treatment Methods; 13. Commonly Available Home Water Treatment Systems; 14. Hard Water: To Soften or Not to Soften; 15. Shock Chlorination of Private Water Wells / This fact sheet is one in a series of fifteen for private water well owners. The one- to four-page fact sheets will be assembled into a two-pocket folder entitled Private Well Owners Guide. The titles will also be a part of the Changing Rural Landscapes project whose goal is to educate exurban, small acreage residents. The authors have made every effort to align the fact sheets with the proposed Arizona Cooperative Extension booklet An Arizona Well Owners Guide to Water Sources, Quality, Sources, Testing, Treatment, and Well Maintenance by Artiola and Uhlman. The private well owner project was funded by both the University of Arizonas Water Sustainability Program-Technology and Research Initiative Fund and the USDA-CSREES Region 9 Water Quality Program.
9

Matching Drinking Water Quality Problems to Treatment Methods

Farrell-Poe, Kitt, Jones-McLean, Lisa, McLean, Scott 04 1900 (has links)
6 pp. / 1. Drinking Water Wells; 2. Private Water Well Components; 3. Do Deeper Wells Mean Better Water; 4. Maintaining Your Private Well Water System; 5. Private Well Protection; 6. Well Water Testing and Understanding the Results; 7. Obtaining a Water Sample for Bacterial Analysis; 8. Microorganisms in Private Water Wells; 9. Lead in Private Water Wells; 10. Nitrate in Private Water Wells; 11.Arsenic in Private Water Wells; 12. Matching Drinking Water Quality Problems to Treatment Methods; 13. Commonly Available Home Water Treatment Systems; 14. Hard Water: To Soften or Not to Soften; 15. Shock Chlorination of Private Water Wells / This fact sheet is one in a series of fifteen for private water well owners. The one- to four-page fact sheets will be assembled into a two-pocket folder entitled Private Well Owners Guide. The titles will also be a part of the Changing Rural Landscapes project whose goal is to educate exurban, small acreage residents. The authors have made every effort to align the fact sheets with the proposed Arizona Cooperative Extension booklet An Arizona Well Owners Guide to Water Sources, Quality, Testing, Treatment, and Well Maintenance by Artiola and Uhlman. The private well owner project was funded by both the University of Arizonas Water Sustainability Program-Technology and Research Initiative Fund and the USDA-CSREES Region 9 Water Quality Program.
10

Evaluation of the Compartment Bag Test for the Detection of Escherichia coli in Drinking Water

Miller, Candace D 17 May 2013 (has links)
INTRODUCTION: More than 1.8 million diarrheal disease deaths can be attributed to the lack of access to water, sanitation and hygiene. These deaths occur mostly in developing countries where water quality testing resources are limited. Several tests are currently used to detect and quantify E. coli and other fecal coliforms in drinking water, however they can be expensive, complex, and technically demanding. There is a need for a simple, reliable, low-cost water quality test that can be used in resource limited settings. Therefore, the purpose of this research was to perform a rigorous evaluation of the recently developed compartment bag test for detection and quantification of E. coli against the standard method, membrane filtration. METHODS AND RESULTS: A total of 270 water samples were collected from forty-five various naturally contaminated water sources around metro-Atlanta from August 2011 through April 2012 and processed using the compartment bag test and membrane filtration with mI agar. Concentrations of E. coli were significantly correlated with a correlation coefficient of 0.904 (95% CI 0.859 – 0.950). Sensitivity and specificity were 94.9% and 96.6%, respectively. CONCLUSION: These results suggest that the compartment bag test produces results consistent with those produced by membrane filtration on mI agar. Based upon its performance, the compartment bag test has the potential to be used as a reliable, low-cost drinking water quality test globally where water quality testing resources are not readily available, and can be implemented in monitoring activities for microbial water quality.

Page generated in 0.0806 seconds