Spelling suggestions: "subject:"waterinoil emulsions"" "subject:"watermilfoil emulsions""
1 |
Role of Biodegradable Ethyl Cellulose in Bitumen ProductionHou, Jun Unknown Date
No description available.
|
2 |
A multidisciplinary approach to structuring in reduced triacylglycerol based systemsWassell, Paul January 2013 (has links)
This study (Wassell & Young 2007; Wassell et al., 2010a) shows that behenic (C22:0) fatty acid rich Monoacylglycerol (MAG), or its significant inclusion, has a pronounced effect on crystallisation (Wassell et al., 2010b; 2012; Young et al., 2008) and interfacial kinetics (3.0; 4.0). New interfacial measurements demonstrate an unusual surface-interactive relationship of long chain MAG compositions, with and without Polyglycerol Polyricinoleate (PGPR). A novel MAG synthesised from Moringa oleifera Triacylglycerol (TAG) influenced textural behaviour of water-in-oil (W/O) emulsions and anhydrous TAG systems (4.0: 5.0; 6.0). Emulsifier mixtures of PGPR and MAG rich in C18:1 / 18:2 and C16:0 / C18:0 do not decrease interfacial tension compared with PGPR alone. Only those containing MAG with significant proportion of C22:0 impacted interfacial behaviour. A mixture of C22:0 based MAG and PGPR results with decreasing tension from ~20°C and is initially dominated by PGPR, then through rearrangement, the surface is rapidly dominated by C22:0 fatty acids. A Moringa oleifera based MAG showed unusual decreased interfacial behaviour not dissimilar to PGPR. All other tested MAG (excluding a C22:0 based MAG), irrespective of fatty acid composition resulted with high interfacial tension values across the measured temperature spectrum (50°C to 5°C). A relative decrease of interfacial tension, with decreased temperature, was greater, the longer the chain length (Krog & Larsson 1992). Moreover, results from bulk and interfacial rheology showed that the presence of C22:0 based MAG has a pronounced effect on both elastic modulus (G’) and viscous modulus (G’’). Through a multidisciplinary approach, results were verified in relevant product applications. By means of ultrasonic velocity profiling with pressure difference (UVP-PD) technique, it was possible to examine the effect of a C22:0 based MAG in an anhydrous TAG system whilst in a dynamic non-isothermal condition (3.0). The non-invasive UVP-PD technique conclusively validated structural events. The application of a Moringa oleifera based MAG in low TAG (35% - 41%), W/O emulsions, results in high emulsion stability without a co-surfactant (PGPR). The bi-functional behaviour of Moringa oleifera based MAG is probably attributed to miscibility (Ueno et al., 1994) of its fatty acids, ranging ~30% of saturated fatty acids (SAFA), with ~70% of C18:1 (5.0). It is concluded that the surface-interactive behaviour of Moringa oleifera based MAG, is attributed to approximately 10% of its SAFA commencing from C20:0. When examined separately and compared, results showed that physical effect of a Moringa oleifera based MAG was not dissimilar to PGPR, influencing the crystallisation kinetics of the particular anhydrous TAG system. When either was combined with a C22:0 rich MAG, enhanced gelation onset and strong propensity to form dendrite structure occurred (5.0). Macrobeam and synchrotron radiation microbeam small angle x-ray diffraction (SR-μ-SAXD) was utilized (6.0) to assess behavior of C22:0 rich MAG, with and without PGPR (Wassell et al., 2012). The C22:0 based MAG combined with PGPR promoted TAG crystallisation as observed by differential scanning calorimetry (DSC). Polarised optical microscopy (POM) observations indicated that C22:0 based MAG eliminates formation of large crystal aggregates, resulting in the likely formation of tiny Pickering TAG / MAG crystals (6.0). It is concluded that the presence and interactive behaviour of Pickering surface-active MAG, is strongly linked to increased fatty acid chain length, which induce increased textural resilience owing to viscoelasticity (4.0; 5.0). A multidisciplinary approach was able to verify structuring behaviour (4.0; 5.0), using multiple analyses (Wassell et al., 2010b; 2012; Young et al., 2008). Novel structuring solutions in reduced TAG based systems have been provided (4.0; 5.0). This study both enhances current understanding of structuring in low TAG W/O emulsions and has led to novel MAG compositions, which address emulsification, structuring and texture in TAG based food systems (Wassell et al., 2010a; 2012a; 2012b; 2012c; 2012d; 2012e; Bech et al., 2013).
|
3 |
Investigation of the stability and separation of water-in-oil emulsion.Andre, Antonio Luzaiadio Buco 12 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: The study of water-in-oil emulsion stability and separation was carried out for this thesis. The
main objectives were as follows: to rank crude oil samples in terms of creating stable emulsions;
to assess the effect of the brine pH on emulsion stability; to investigate the influence of different
organic acids on emulsion stability; and to determine the efficiency of an electric separator in
removing water droplets from a flowing organic liquid.
Seven crude oil samples from different sources such as A, C, H, M, P, U, and V were used to
investigate the water-in-crude-oil emulsion. Two crude oil blends were also used. Brine solution
comprising 4 wt% NaCl and 1 wt% CaCl2 was used. In this study the gravity settling, critical
electric field (CEF) and centrifuge test methods were used to estimate the emulsion stability
created by the crude oil and crude oil blend samples. The experiments were carried out at 60°C.
In the gravity test method, the brine pH, stirring speed, stirring time and water-cut (the fraction
of water in the emulsion) were changed in 2IV-1 factorial design. The parameters for the
centrifuge and CEF test methods were selected on the basis of the gravity test method. The crude
oil samples were ranked in terms of creating stable emulsion in the following order V, U, P, H,
A, M and C. The crude oil blends created more stable emulsions than their respective
constituents. The ranking order of the crude oil samples did not correlate to asphaltenes, resins,
wax or total acid number (TAN). There was a good correlation between the test methods used.
There was an increase and decrease in the brine pH when different crude oil samples were in
contact with the brine. It is believed that the structure of the surfactants present in crude oil may
explain the emulsion-forming characteristics of different crude oil deposits around the world.
To account for the effect of organic acids on emulsion stability, different organic acids were
used. In this case, a mixture of equal volumes of heptane and toluene (here referred to as heptol)
was used as the model for crude oil. The brine solution composition was the same as the one
used in the crude oil experiments. Equal volumes of heptol and brine were mixed for a period of
time and then separated. The brine pH was changed from acidic to basic. In this regard, gas chromatography and liquid chromatography were used to analyse the concentration of the acids
in the brine and heptol samples. It was found that the partitioning coefficient for acids containing
a straight-chain hydrocarbon moiety decreased with an increase in molecular weight. However,
the partitioning coefficient depended on the structure of the acid. The presence of a benzene ring
in the organic acid increased the partitioning coefficient. Organic acids with rings created an
interface layer when the heptol sample was mixed with basic brine solution. This confirmed that
the emulsion of water and crude oil starts with the formation of a film, and it also provides
insight into the formation of naphthenate soap. It is believed that the naphthenic acids that cause
stable emulsions have rings. More organic acids should be tested. It is recommended that the
interaction of asphaltenes, resins and naphthenic acids should be investigated at different pH
levels, temperatures and pressures.
The separation of water droplets from a flowing organic liquid was carried out using a direct
current (d.c.) electric separator. The separator used centrifugal forces and a d.c. electric field to
enhance the removal of water drops from a flowing organic liquid. For this, vegetable oil, crude
oil blend and heptane were used as the continuous phase. The experiments were carried out at
room temperature (for heptane and vegetable oil) and at 70°C (for vegetable oil and crude oil
blend). The flow rate to the separator was kept constant. The separator removed water droplets
from flowing organic liquids. A maximum of 97% (at 100 V)of water droplets was removed
from the heptane liquid; a maximum of 28% (at 100 V) of water droplets was removed from the
vegetable oil at 70°C and 5% (at 100 V) of water droplets was removed from the crude oil blend.
The d.c. electric field enhanced the efficiency of the separator in removing water droplets. The
break-up of the droplets is suspected to decrease the efficiency of the separator. This separator
can easily be installed into existing process lines and does not require much space. However,
further improvements are needed in the design of this separator.
Emulsions created in the petroleum industries are quite complex to deal with. The identification
of the structure of the components in crude oil is a matter that still has to be investigated. An
improvement in the techniques may lead to a better understanding of the cause of the ultra-stable
emulsion encountered in the petroleum and related industries. / AFRIKAANSE OPSOMMING: Die studie van die stabiliteit en skeiding van water-in-olie-emulsies is vir hierdie tesis uitgevoer.
Die hoofdoelstellings was as volg: om ruolie-monsters in terme van die skepping van stabiele
emulsies te klassifiseer; om die effek van die pekel-pH op emulsie-stabiliteit te assesseer; om die
invloed van verskillende organiese sure op emulsie-stabiliteit te ondersoek; en om die
doeltreffendheid van ’n elektriese skeier in die verwydering van waterdruppels uit ’n vloeiende
organiese vloeistof te bepaal.
Sewe ruolie-monsters uit verskillende bronne soos was A, C, H, M, P, U en V gebruik om die
water-in-ruolie-emulsie te ondersoek. Twee ruolie-mengels is ook gebruik. ’n Pekeloplossing
wat 4 wt% NaCl en 1 wt% CaCl2 bevat, is gebruik. In hierdie studie is die gravitasie-afsakkings-,
kritieke elektriese veld- (KEV-) en sentrifuge-toetsmetodes gebruik om die emulsie-stabiliteit te
beraam wat deur die ruolie- en ruolie-mengsel-monsters geskep is. Die eksperimente is teen
60°C uitgevoer. In die gravitasietoetsmetode is die pekel-pH, roertempo en watersnyding (die
fraksie van water in die emulsie) is in ‘n 2IV-1-faktoriaalontwerp ondersoek. Die parameters vir
die sentrifuge- en KEV-toetsmetodes is op grond van die gravitasietoetsmetode resultate gekies.
Die ruolie-monsters is in terme van die skepping van ’n emulsie stabiliteit geklassifiseer in die
volyende orde V, U, P, H, A, M, en C. Die rudie-menysels het meer stabiele emulsies gerorm as
die respektiewe samestellende dele. Die rangorde van emulsie stabiliteit van die ruolie-monsters
het nie met asfaltene, hars, waks of totale suurgetal gekorreleer nie. Daar was ’n goeie korrelasie
tussen die toetsmetodes wat gebruik is. Daar was ’n toename of afname in die pekel-pH wanneer
verskillende ruolie-monsters in kontak met die pekel was. Die aanname is dat die struktuur van
die surfaktante wat in die ruolie teenwoordig is, die emulsievormende karaktereienskappe van
verskillende ruolie-neerslae regoor die wêreld kan verklaar.
Om die effek van organiese sure op emulsie-stabiliteit te verklaar, is verskillende organiese sure
gebruik. In hierdie geval is ’n mengsel van gelyke hoeveelhede heptaan en tolueen (voortaan
verwys na as heptol) as die model vir ruolie gebruik. Die pekeloplossing-samestelling was dieselfde as die een wat in die ruolie-eksperimente gebruik is. Gelyke hoeveelhede heptol en
pekel is vir ’n tydperk gemeng en toe geskei. Die pekel-pH is van suurvormend tot basies
verander. Gaschromatografie en vloeistofchromatografie is gebruik om die konsentrasie van die
sure in die pekel- en heptoloplossings te analiseer. Daar is gevind dat die verdelingskoëffisiënt
vir sure wat ’n reguitketting-koolwaterstofhelfte bevat met ’n toename in molekulêre gewig
afneem. Die verdelingskoëffisiënt het egter van die struktuur van die suur afgehang. Die
teenwoordigheid van ’n benseenring in die organiese suur het die verdelingskoëffisiënt verhoog.
Organiese sure met ringe het ’n tussenvlaklaag geskep toe die heptolmonster met die basiese
pekeloplossing gemeng is. Dit het bevestig dat die emulsie van water en ruolie met die vorming
van ’n vlies begin, en gee ook insig in die vorming van naftenaatseep. Dit blyk dat die
naftenaatsure wat stabiele emulsies veroorsaak, ringe het. Meer organiese sure moet getoets
word. Daar word aanbeveel dat die interaksie van asfaltene, hars en naftenaatsure teen
verskillende pH-vlakke, temperature en drukke getoets word.
Die skeiding van waterdruppels uit ’n vloeiende organiese vloeistof is uitgevoer met behulp van
’n gelykstroom- elektriese skeier. Die skeier het sentrifugiese kragte en ’n wisselstroomelektriese
veld gebruik om die verwydering van waterdruppels uit ’n vloeiende organiese
vloeistof te verhoog. Hiervoor is plantolie, ’n ruoliemengsel en heptaan gebruik as die
deurlopende fase. Die eksperimente is teen kamertemperatuur (vir heptaan en plantolie) en teen
70°C (vir plantolie en ruolie-mengsel) uitgevoer. Die vloeitempo na die skeier is konstant gehou.
Die skeier het waterdruppels uit die vloeiende organiese vloeistowwe verwyder. N’ maksimum
van 97% (by 100 V) van die water drupples is verweider van die heptaan vloeistof; a maksimum
van 28% (by 100 V) van die water druppels was verweider van die plantolie by 70°C en 5% (by
100 V) van die water druppels was verweider van die rudie mengsel. Die gelykstroom- elektriese
veld het die doeltreffendheid van die skeier om waterdruppels te verwyder, verhoog. Daar word
vermoed dat die afbreek van die waterdruppels die doeltreffendheid van die skeier verlaag. Die
skeier kan met gemak in bestaande proseslyne geïnstalleer word en benodig nie veel spasie nie.
Verdere verbeterings is egter nodig ten opsigte van die ontwerp van hierdie skeier.
Emulsies wat in die petroleumbedrywe geskep word, is kompleks om te hanteer. Die
identifikasie van die struktuur van die komponente in ruolie verg verdere ondersoek. ’n Verbetering in hierdie tegnieke kan tot beter begrip lei van die oorsaak van die ultrastabiele
emulsie wat in die petroleum- en verwante bedrywe aangetref word.
|
4 |
Mid-infrared sensors for hydrocarbon analysis in extreme environmentsLuzinova, Yuliya 29 June 2010 (has links)
A number of MIR sensing platforms and methods were developed in this research work demonstrating potential applicability of MIR spectroscopy for studying hydrocarbon systems in extreme environments.
First of all, the quantitative determination of the diamondoid compound adamantane in organic media utilizing IR-ATR spectroscopy at waveguide surfaces was established. The developed analytical strategy further enabled the successful detection of adamantane in real world crude oil samples. These reported efforts provide a promising outlook for detection and monitoring of diamondoid constituents in naturally occurring crudes and petroleum samples.
IR-ATR spectroscopy was further utilized for evaluating and characterizing distribution, variations, and origin of carbonate minerals within sediment formations surrounding a hydrocarbon seep site - MC 118 in the Gulf of Mexico. An analytical model for direct detection of 13C-depleted authigenic carbonates associated with cold seep ecosystems was constructed. Potential applicability of IR-ATR spectroscopy as direct on-ship - and in future in situ - analytical tool for characterizing hydrocarbon seep sites was demonstrated.
MIR evanescent field absorption spectroscopy was also utilized to expand the understanding on the role of surfactants during gas hydrate formation at surfaces. This experimental method allowed detailed spectroscopic observations of detergent-related surface processes during SDS mediated gas hydrate formation. The obtained IR data enabled proposing a mechanism by which SDS decreases the induction time for hydrate nucleation, and promotes hydrate formation. Potential of MIR fiberoptic evanescent field spectroscopy for studying surface effects during gas hydrate nucleation and growth was demonstrated.
Next, quantifying trace amounts of water content in hexane using MIR evanescent field absorption spectroscopy is presented. The improvement in sensitivity and of limit of detection was obtained by coating an optical fiber with layer of a hydrophilic polymer. The application of the polymer layer has enabled the on-line MIR detection of water in hexane at low ppm levels. These results indicate that the MIR evanescent filed spectroscopy method shows potential for in-situ detection and monitoring of water in industrial oils and petroleum products.
Finally, quantification of trace amounts of oil content in water using MIR evanescent field absorption spectroscopy is reported. Unmodified and modified with grafted hydrophobic polymer layer silver halide optical fibers were employed for the measurements. The surface modification of the fiber has enabled the on-line MIR analysis of crude oil in water at the low ppb level. Potential application of MIR fiber-optic evanescent field spectroscopy using polymer modified waveguides toward in-situ low level detection of crude oil in open waters was demonstrated.
|
5 |
Protein directed evolutionLaos, Roberto 25 September 2017 (has links)
Evolución dirigida de proteínas: La evolución dirigida es una técnica que nos permite explorar funciones enzimáticas que no son requeridas en el ambiente natural. Esta técnica, simula procesos genéticos naturales y de selección. Esta estrategia se utiliza cuando un diseño racional es muy complicado. Consiste en una repetición de ciclos de diversificación y selección que llevan a la acumulación de mutaciones benéficas. Aquí se presenta dos ejemplos de evolución dirigida con los cuales se ha trabajado directamente: la ADN polimerasa del organismo Thermus aquaticus usada comúnmente en PCR, y la proteína LacI que regula la expresión de genes usados para el metabolismo de lactosa en E. Coli. / Directed evolution allows us to explore protein functionalities not required in the natural environment. It mimics natural genetic processes and selective pressures. This approach is used when the molecular basis is not completely understood and rational design is a difficult task. This approach consists of serial cycles of consecutive diversification and selection which eventually lead to the accumulation of beneficial mutations. Here are presented two cases where directed evolution is used to modify two different proteins: Taq polymerase, enzyme used for DNA extension in PCR, and the LacI repressor protein which regulates gene expression on E.coli.
|
6 |
Design and fabrication of cellulose nanofibril (CNF) based microcapsules and their applicationsMubarak, Shuaib Ahmed 13 August 2024 (has links) (PDF)
Emulsions, comprising dispersed oil or water droplets stabilized by surfactants, are widely employed across industries. However, conventional surfactants raise environmental concerns, and emulsions may encounter stability challenges during storage. A promising alternative lies in Pickering emulsions, where particles adhere irreversibly at the water-oil interface, providing enhanced stability. Recent research explores the use of natural bio-based particles as interfacial stabilizers for creating Pickering emulsions, offering improved stability and environmental friendliness. This significant change towards particle-stabilized emulsions addresses sustainability and efficacy concerns. This dissertation investigates the application of cellulose nanofibrils (CNFs) in stabilizing Pickering emulsions for the development of functional microcapsules with diverse applications. A novel CNF aerogel with a hierarchical pore structure was developed using n-hexane-CNF oil-in-water (O/W) Pickering emulsions as templates. These hollow microcapsule-based CNF (HM-CNF) aerogels demonstrated high oil absorption capacities of 354 grams per gram for chloroform and 166 grams per gram for n-hexadecane, without requiring hydrophobic modifications, highlighting their potential as environmentally sustainable and high-performance oil absorbents. Further, the research explored the microencapsulation of n-hexadecane, an organic phase change material (PCM), within a hybrid shell of CNFs and chitin nanofibers (ChNFs). This method significantly improved the thermal stability of the encapsulated n-hexadecane, with maximum weight loss temperatures increasing from 184 degrees Celsius to 201 degrees Celsius with ChNF loading. The char yield also increased with ChNF content, indicating enhanced thermal degradation resistance. These emulsions demonstrated stability in various ionic solutions and elevated temperatures, showcasing their potential for applications such as thermal energy storage, cosmetics, food, and pharmaceuticals. Additionally, the dissertation examined stable water-in-oil (W/O) inverse Pickering emulsions using TEMPO-treated cellulose nanofibrils (TCNF). These emulsions, stabilized by TCNF-oleylamine complexes, exhibited droplet sizes ranging from 27 micrometers to 8 micrometers depending on TCNF concentration. They maintained stability under varying pH, ionic strength, and temperature conditions and demonstrated the encapsulation of water-soluble components like phytic acid, highlighting their versatility for diverse encapsulation applications. Overall, the research presents significant advancements in the utilization of CNF-stabilized Pickering emulsions, employing them as templates for fabricating aerogels and microcapsules. This approach enhances oil absorption, thermal stability, and encapsulation capabilities, offering eco-friendly solutions for diverse applications.
|
Page generated in 0.0762 seconds