Spelling suggestions: "subject:"test file"" "subject:"test pile""
151 |
Characterization of zoonotic flavi- and alphaviruses in sentinel animals in South AfricaHuman, Stacey 02 January 2012 (has links)
In South Africa (SA), the arboviruses West Nile virus (WNV), Wesselsbron virus (WSLV), Sindbis virus (SINV) and Middelburg virus (MIDV) are considered the most important flavi- and alphaviruses. Clinical presentation and importance of these viruses as animal pathogens in SA remains ambiguous. Although widely endemic in SA, lineage 2 (L2) WNV has rarely been associated with cases of neurological disease and was therefore assumed to be non-pathogenic. However, fatal encephalitis in a foal was diagnosed as L2 WNV in SA, 1996, leading to the thought that L2 cases were possibly being missed. As the above-mentioned arboviruses have the same transmission vectors, Culex mosquitoes for WNV and SINV and Aedes mosquitoes for WSLV and MIDV, co-screening for these viruses is important. We hypothesise that horses could be used as sentinels for virus activity in SA and cases of unexplained neurological disease or fever in animals overlooked, rather than being non-existent. To this end, the study aimed to screen horses displaying unexplained neurological disease or fever with Flavivirus family-specific RT-PCR. Additionally, samples were screened with an Alphavirus family-specific RT-PCR to determine whether co-circulating viruses could be responsible for neurological symptoms in horses. The results would aid in establishing the molecular epidemiology and disease description of each virus, virus distribution and disease seasonality in SA. In total 261 clinical specimens were collected from horses displaying these symptoms (2008 - 2010). Samples were screened with Flavi- and Alphavirus differential diagnostic RT-PCR and acute serum was screened for WNV-IgM and neutralizing antibodies. Serological screening (WNV haemagglutination inhibition, WNV IgG and/or WNV neutralization) identified 62 suspected WNV cases while 34 cases could be confirmed by RT-PCR (16/34), WNV IgM and neutralization assays (18/34) and virus isolation. Neurological disease made up 91% (31/34) of the cases, mortality was calculated at 44% (15/34). Phylogenetically 12/16 RT-PCR positives grouped with L2 SA strains. The first detection of L1 WNV and horse-associated abortion in SA was reported when a pregnant mare aborted her foetus in Ceres, Western Cape. The first cases of WSLV-associated disease in horses were identified by sequencing Flavivirus RT-PCR positive products from 2 horses displaying severe neurological disease; one being fatal. This suggests missed cases in the past. To elucidate virulence factors of WSLV, a human encephalitic strain AV259, was subjected to Roche FLX454 full-genome sequencing and compared to a previously sequenced febrile strain (H177). Several structural amino acid changes occurred in proteins NS2A, NS4B and NS5 of AV259; necessary for Flavivirus replication. Phylogenetically AV259, clinical horse strains and WSLV strains previously isolated from animals, humans and arthropods were similar. Additionally and in concurrence with other studies, WSLV clusters with Sepik virus (SEPV) within the YFV group of the Flaviviridae family. Alphavirus screening identified 17 cases; 6/17 SINV and 11/17 MIDV. SINV-WNV co-infections resulted in fatal neurological disease; remaining SINV cases recovered after displaying fever and/or mild neurological disease. MIDV symptoms varied from “three-day-stiffness” to severe neurological symptoms, with 2 fatalities. Co-infections with equine encephalosis and Shuni virus were identified. MIDV strains identified in this study were phylogenetically distinct from older strains. Results highlight the use of horses as sentinels for virus activity and suggest that these arboviruses may have been previously missed as horse pathogens in Africa. These viruses should be considered as the aetiological agents in animals displaying unexplained neurological or hepatic disease, fevers or abortions. Awareness of flavi- and alphaviruses and the disease manifestation they may have in horses was illustrated. These findings suggest that a WNV vaccine may be beneficial for horses in SA. / Dissertation (MSc)--University of Pretoria, 2011. / Medical Virology / Unrestricted
|
152 |
Eine Studie zum Vorkommen des West-Nil-Virus in der Wildvogelpopulation DeutschlandsPrell, Juliane 24 September 2013 (has links)
In den letzten Jahren erreichten viele neue (emerging) Viren Europa, die zum Teil (z.T.) zoonotisch auf den Menschen übertragbar sind. So musste man sich mit Geflügel- und Schweinegrippe, Blauzungenkrankheit, Infektiöser Anämie der Einhufer oder auch SARS (severe acute respiratory syndrome) auseinandersetzen. Bedingt durch verschiedene Faktoren, wie Klimawandel oder zunehmende Globalisierung und damit einhergehendem Verkehr zwischen den Kontinenten verbesserten sich auch die Bedingungen für die Virusverbreitung, so dass viele für Deutschland untypische Krankheitserreger auch hier auftraten. Das West-Nil-Virus (WNV) ist in Europa bereits endemisch verbreitet und könnte somit eine besondere Gefahr für Deutschland darstellen. Es ist ein bekannter Zoonose-Erreger, und sein Eintrag und die rasche Verbreitung des Virus in Amerika 1999 zeigten wie gefährlich neue Viren in naiven Populationen sein können. Über die Verbreitung des Virus in Deutschland gibt es nur wenige Studien z.B. des Robert-Koch-Instituts (LINKE et al. 2007a) und des Friedrich-Loeffler-Instituts (SEIDOWSKI et al. 2010), wobei in keiner Studie tote Vögel als Untersuchungsmaterial genutzt wurden. Da das WNV in Amerika mit einem auffälligen Vogelsterben einherging, ist es naheliegend, den Virusnachweis zuerst bei toten Vögeln zu erbringen.
|
153 |
Expression diagnostisch verwendbarer Antigene zum Nachweis West-Nil-Virus-spezifischer Antikörper: Expression diagnostisch verwendbarer Antigene zum NachweisWest-Nil-Virus-spezifischer AntikörperDelker, Anna Maria 12 March 2014 (has links)
Grundlage der vorliegenden Arbeit ist die Überlegung, dass eine Möglichkeit, die Spezifität der bisher angewendeten Verfahren zur West-Nil-Virus-Diagnostik zu verbessern, in der Anwendung rekombinanter WNV-spezifischer Antigene besteht. Die unter anderem auf bioinformatischen Methoden basierende Identifikation von potenziellen B-Zell-Epitopen und Auswahl entsprechender Sequenzabschnitte richtete sich dabei gezielt auf immunogene Bereiche, die innerhalb der Gruppe der Flaviviren einen ausreichenden Sequenzunterschied zu allen weiteren sequenzverwandten Erregern, zusammengefasst im Japanische Enzephalitis-Serokomplex, boten. Drei ausgewählte Bereiche innerhalb der Strukturproteinsequenz, bezeichnet als prM, Cnat und Cme, sollten mit Hilfe des Expressionssystems Pichia pastoris bzw. Escherichia coli rekombinant exprimiert werden. Nach Erarbeitung optimaler Expressionsbedingungen folgte die affinitätschromatografische Reinigung der im weiteren Verlauf zur Immunisierung von Balb/c-Mäusen eingesetzten Polypeptide. Die gewonnenen Seren der nach verschiedenen Immunisierungsprotokollen geimpften Mäuse wurden im Anschluss immunologisch untersucht. Es zeigte sich, dass die rekombinanten Derivate des Capsid-Proteins eine deutliche Serokonversion hervorriefen. Analysen der mit Cnat und MBP-Cme immunisierten Mausseren wiesen vorhandene peptidspezifische sowie virusspezifische Antikörper nach. Der Einsatz dieser gewonnenen Peptidantigene im indirekten ELISA-Testsystem zur Detektion WNV-spezifischer Antikörper unter Verwendung humaner WNV-IgG-positiver Serumproben zeigte positive Resultate.
Im Gegensatz hierzu führte die Immunisierung mit prM lediglich zu einer unspezifischen murinen Antikörperbildung. Die Unterscheidung zwischen WNV-positiven und WNV negativen Humanseren war unter Verwendung des rekombinanten Antigens prM nicht möglich.
Im Ergebnis zeigten zwei der drei in dieser Arbeit rekombinant erstellten Strukturproteinabschnitte ihr immunologisches Potenzial in der Generierung muriner WNV spezifischer Antikörper. Zudem konnte mit der Expression der WNV-spezifischen C Protein Antigene ein Beitrag zur Etablierung eines indirekten ELISA-Testsystems zur Detektion WNV-bedingter Humaninfektionen geleistet werden.:Inhaltsverzeichnis
Bibliografische Darstellung V
Abkürzungsverzeichnis VI
Abbildungsverzeichnis IX
Tabellenverzeichnis X
Formelverzeichnis XII
1 Einleitung 1
1.1 West-Nil-Virus: Relevanz und epidemiologische Aspekte 1
1.2 Virale Struktur und Replikation 3
1.3 West-Nil-Virus-Erkrankung: Prädiktion, Pathogenese und Krankheitsbild 7
1.4 Diagnostik von West-Nil-Virus-Infektionen 9
1.5 Zielstellung 12
2 Materialien 13
2.1 Versuchstiere, Bakterien-, Hefe- und Virusstämme 13
2.2 Vektoren und Oligonukleotide 13
2.3 Reagenzsysteme, Standards und Enzyme 15
2.4 Antikörper 16
2.5 Feinchemikalien und Reagenzien 16
2.6 Puffer und Lösungen 19
2.7 Nährmedien 20
2.8 Verbrauchsmaterialien und Technische Ausstattung 21
3 Methoden 25
3.1 Molekularbiologische Methoden 25
3.1.1 Reverse Transkription 25
3.1.2 Polymerase-Kettenreaktion (PCR) 25
3.1.3 DNA-Sequenzierung 28
3.1.4 Agarose-Gelelektrophorese 28
3.1.5 DNA-Reinigung 29
3.1.6 Bestimmung der DNA-Konzentration 29
3.1.7 Restriktionsverdau 29
3.1.8 Ligation 30
3.2 Arbeiten mit E. coli 31
3.2.1 Kultivierung und Lagerung 31
3.2.2 Herstellung kompetenter E. coli-Zellen 31
3.2.3 Transformation von Plasmid-DNA in kompetente E. coli-Zellen 31
3.2.4 Plasmidpräparation aus E. coli 31
3.2.5 Expression rekombinanter Proteine in E. coli 32
3.3 Arbeiten mit P. pastoris 32
3.3.1 Kultivierung und Lagerung 32
3.3.2 Herstellung kompetenter P. pastoris-Zellen 32
3.3.3 Transformation von Plasmid-DNA in kompetente P. pastoris-Zellen 33
3.3.4 Expression rekombinanter Proteine in P. pastoris 33
3.4 Biochemische Methoden 34
3.4.1 Proteinextraktion aus Bakterienzellen 34
3.4.2 Proteinextraktion aus Hefezellen 35
3.4.3 Proteinfällung mittels Trichloressigsäure (TCA) 35
3.4.4 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE) 35
3.4.5 Silberfärbung 37
3.4.6 Western Blot 37
3.4.7 Reinigung der rekombinanten Polypeptide aus Proteingemischen 38
3.4.8 Konzentrationsbestimmung von Proteinen 40
3.4.9 Spaltung von MBP-Fusionsproteinen 40
3.4.10 Indirekter Immunfluoreszenztest (IFT) 41
3.4.11 Immunisierung der Balb/c-Mäuse 42
3.4.12 Indirekter ELISA 43
3.4.13 Bestimmung des murinen Antikörpertiters 44
3.4.14 Nachweis humaner Antikörper im Testserum 45
4 Ergebnisse 46
4.1 Definition der ausgewählten Strukturproteinsequenzen 46
4.2 Expression der rekombinanten Polypeptide prM, Cnat und Cme in P. pastoris 47
4.2.1 Klonierung der Expressionsplasmide 47
4.2.2 Transformation von Pichia pastoris 49
4.2.3 Expression der Zielpeptide in P. pastoris 51
4.3 Expression von Cnat und Cme in E. coli 56
4.3.1 Klonierung der Expressionsplasmide 56
4.3.2 Transformation von E. coli 58
4.3.3 Expression der WNV-Sequenzen Cnat und Cme als Fusionsproteine 59
4.3.4 Spaltung der Fusionsproteine mittels Faktor Xa 62
4.3.5 Isolierung der Zielpeptide Cnat und Cme 63
4.4 Untersuchung der Immunogenität der rekombinanten WNV-Polypeptide 66
4.4.1 Immunisierung von Versuchstieren mit rekombinanten WNV-Polypeptiden 66
4.4.2 Analyse der murinen Seren mittels ELISA 66
4.4.3 Erweiterte Analyse des rekombinanten prM-Polypeptids mit Humanseren 67
4.4.4 Erweiterte Analyse der murinen prM-Seren im IFT 69
4.5 Prüfung der rekombinanten Peptidantigene auf ihre Verwendbarkeit in einem WNV-spezifischen Testsystem 69
4.5.1 Untersuchung der humanen Seren S2-S42 mittels ELISA 69
4.5.2 Einsatz von Cnat und MBP-Cme als Antigene zur Untersuchung der humanen Seren S2-S42 im ELISA 70
5 Diskussion 72
5.1 Expression von prM, Cnat und Cme in P. pastoris 73
5.2 Expression von Cnat und Cme in E. coli 77
5.3 Analyse der Immunogenität von prM, Cnat und MBP-Cme 79
5.4 Beitrag zur Etablierung eines indirekten ELISA für die Detektion WNV-spezifischer Antikörper in humanen Serumproben 84
6 Zusammenfassung 90
7 Literaturverzeichnis 94
8 Anhang 104
Erklärung über die eigenständige Abfassung der Arbeit XIV
Danksagung XV
Lebenslauf XVI
|
154 |
Seroprevalence and Risk Factors for EquineWest Nile Virus Infections in Eastern Germany, 2020Ganzenberg, Stefanie, Sieg, Michael Sieg, Ziegler, Ute, Pfeffer, Martin, Vahlenkamp, Thomas W., Hörügel, Uwe, Groschup, Martin H., Lohmann, Katharina L. 31 August 2023 (has links)
West Nile virus (WNV) infections were first detected in Germany in 2018, but information
about WNV seroprevalence in horses is limited. The study’s overall goal was to gather information
that would help veterinarians, horse owners, and veterinary-, and public health- authorities
understand the spread of WNV in Germany and direct protective measures. For this purpose, WNV
seroprevalence was determined in counties with and without previously registered WNV infections
in horses, and risk factors for seropositivity were estimated. The cohort consisted of privately
owned horses from nine counties in Eastern Germany. A total of 940 serum samples was tested by
competitive panflavivirus ELISA (cELISA), and reactive samples were further tested by WNV IgM
capture ELISA and confirmed by virus neutralization test (VNT). Information about potential risk
factors was recorded by questionnaire and analyzed by logistic regression. A total of 106 serum
samples showed antibodies against flaviviruses by cELISA, of which six tested positive for WNV
IgM. The VNT verified a WNV infection for 54 samples (50.9%), while 35 sera neutralized tick-borne
encephalitis virus (33.0%), and eight sera neutralized Usutu virus (7.5%). Hence, seroprevalence
for WNV infection was 5.8% on average and was significantly higher in counties with previously
registered infections (p = 0.005). The risk factor analysis showed breed type (pony), housing in
counties with previously registered infections, housing type (24 h turn-out), and presence of outdoor
shelter as the main significant risk factors for seropositivity. In conclusion, we estimated the extent of
WNV infection in the resident horse population in Eastern Germany and showed that seroprevalence
was higher in counties with previously registered equine WNV infections.
|
155 |
Population Dynamics and Community Structure of Mosquitoes (Diptera: Culicidae) Recorded in Denton, Texas from 2005 to 2015Hambrick, Bethany Lynn 05 1900 (has links)
A population survey was conducted on the mosquito species recorded in Denton, Texas for the years of 2005 to 2015. Data used in this project were obtained from an ongoing, long-term surveillance program led by the City of Denton and conducted through the University of North Texas. Research focused on the population dynamics and community structure of mosquitoes collected within urban areas of Denton, Texas in relation to certain environmental variables. A total of 80,837 female mosquitoes were captured and represented 38 species found under the following genera: Aedes, Anopheles, Coquillettidia, Culex, Culiseta, Mansonia, Orthopodomyia, Psorophora, Toxorhynchites, and Uranotaenia. Culex quinquefasciatus was the most abundant species followed by Aedes vexans. Seasonal patterns of the most abundant species revealed high variability throughout the study. Container breeders were most abundant in August and those that breed in floodwaters were most abundant in the months of May and September. Samples were tested for arbovirus presence through the Texas Department of State Health Services in Austin, Texas and multiple pools tested positive for West Nile virus throughout the study. Stepwise multiple regression and Spearman's rank correlation analyses were performed to examine the relationship between the mosquito community and environmental variables. Data revealed that temperature, precipitation, and dew point were the most important variables influencing the mosquito population in the City of Denton.
|
156 |
Developing a Guide and Template to Aid the Preparation of Mosquito Surveillance Plans in OhioFlynn, Rebecca Anne 16 July 2018 (has links)
No description available.
|
157 |
Analysis of the Cellular Proteins, TIA-1 and TIAR, and their Interaction with the West Nile Virus (WNV) 3' SL Minus-Strand RNAEmara, Mohamed Maged 03 May 2008 (has links)
The 3' terminal stem loop of the WNV minus-strand [WNV3'(-) SL] RNA was previously shown to bind the cell protein, T-cell intracellular antigen-1 (TIA-1), and the related protein, TIAR. These two proteins are known to bind AU-rich sequences in the 3' UTRs of some cellular mRNAs. AU stretches are located in three single-stranded loops (L1, L2, and L3) of the WNV3'(-) SL RNA. The RNA binding activity of both proteins was reduced when L1 or L2, but not L3, AU sequences were deleted or substituted with Cs. Deletion or substitution with Cs of the entire AU-rich sequence in either L1 or L2 in a WNV infectious clone was lethal for the virus while mutation of some of these nt decreased the efficiency of virus replication. Mutant viral RNAs with small plaque or lethal phenotypes had similar translational efficiencies to wildtype RNA, but showed decreased levels of plus-strand RNA synthesis. These results correlated well with the efficiency of TIA-1 and/or TIAR binding in in vitro assays. In normal cells, TIA-1 and TIAR are evenly distributed in the cytoplasm and nucleus. Between 6 and 24 hr after WNV infection, TIAR concentrated in the perinuclear region and TIA-1 localization to this region began by 24 hr. Similar observations were made in DV2 infected cells but at later times after infection. In infected cells, both proteins colocalized with dsRNA, a marker for viral replication complexes, and with viral non-structural proteins. Anti-TIAR or anti-TIA-1 antibody coimmunoprecipitated viral NS3 and possibly other viral nonstructural proteins. In response to different types stress, TIA-1 and TIAR recruit cell mRNA poly(A)+ into cytoplasmic stress granules (SG) leading to general translational arrest in these cells. SG were not induced by flavivirus infection and cells became increasingly resistant to arsenite induction of SG with time after infection. Processing Body (PB) assembly was also decreased beginning at 24 hr. These data suggest that the sequestration of first TIAR and then TIA-1 via their interaction with viral components in flavivirus infected cells inhibits SG formation and prevents the shutoff of host translation.
|
158 |
Macromolecular Interactions in West Nile Virus RNA-TIAR Protein Complexes and of Membrane Associated Kv Channel PeptidesZhang, Jin 01 July 2013 (has links)
Macromolecular interactions play very important roles in regulation of all levels of biological processes. Aberrant macromolecular interactions often result in diseases. By applying a combination of spectroscopy, calorimetry, computation and other techniques, the protein-protein interactions in the system of the Shaw2 Kv channel and the protein-RNA interactions in West Nile virus RNA-cellular protein TIAR complex were explored. In the former system, the results shed light on the local structures of the key channel components and their potential interaction mediated by butanol, a general anesthetic. In the later studies, the binding modes of TIAR RRM2 to oligoU RNAs and West Nile virus RNAs were investigated. These findings provided insights into the basis of the specific cellular protein–viral RNA interaction and preliminary data for the development of strategies on how to interfere with virus replication
|
159 |
Construction d'un clone infectieux d'une souche méditerranéenne du Virus West Nile, validation de ses propriétés biologiques et développement de nouveaux modèles d'évaluation de la virulenceBahuon, Céline 14 September 2012 (has links) (PDF)
Le virus West Nile (VWN) est un virus neurotrope principalement transmis par piqûre de moustique et dont le réservoir est constitué par la faune aviaire sauvage. Les souches circulant en Europe appartiennent à 4 lignages génétiques différents à l'origine de nombreuses épidémies d'ampleur modérée à faible et limitées géographiquement, contrairement à ce qui a été observé en Amérique du Nord. En 1998 en Israël, une importante épidémie a a été associée pour la première fois à une forte mortalité de la faune aviaire sauvage. Le virus (souche IS-98-ST1, lignage 1a) a été isolé du cerveau d'une cigogne moribonde. L'objet de cette thèse a été de construire un clone infectieux de la souche IS-98-ST1 afin d'en explorer les propriétés de neuroinvasion et de pouvoir mettre en évidence les déterminants moléculaires de sa virulence.Le virus obtenu à partir de la construction clone infectieux s'est révélé posséder les mêmes propriétés biologiques que le virus parental, que ce soit in vitro sur cellules Vero ou in vivo sur souris sensibles ou résistantes ou encore sur l'embryon de poulet. L'embryon de poulet est présenté ici comme un nouveau modèle d'évaluation de la virulence du VWN. Un modèle cellulaire neuronale (lignée de neuroblastomes humains, SK-N-SH) est aussi évalué dans ce manuscrit. En conclusion, un nouvel outil de génétique inverse a été obtenu pour le VWN. Cet outil permettra de travailler sur l'impact de mutations ponctuelles, ou de modifications plus importantes touchant un ou plusieurs gènes viraux sur la virulence du VWN, spécifiquement dans le contexte européen.
|
160 |
Estimer le risque associé aux maladies vectorielles dans un contexte d’émergence : cas de la maladie de Lyme et du virus du Nil occidental au QuébecRipoche, Marion 12 1900 (has links)
No description available.
|
Page generated in 0.064 seconds