• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 36
  • 8
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 152
  • 38
  • 35
  • 33
  • 33
  • 26
  • 23
  • 23
  • 22
  • 22
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Some Aspects of the Fusarium Wilt of Muskmelon and Watermelon in Southwestern Ontario / Fusarium Wilt of Muskmelon and Watermelon in Southwestern Ontario

Reid, James 10 1900 (has links)
Distribution of Fusarium wilt of muskmelon and watermelon in southwestern Ontario was studied. Particular attention was paid to morphological and physiological variations of the isolates obtained. Morphological variations were based on comparison in culture with a selected standard. Physiological variations were detected by pathogenicity experiments, and a study of assimilation of various carbon and nitrogen compounds. Some further aspects of the biology of the organisms were investigated. An experiment was carried out, employing several muskmelons and watermelon varieties, to compare their resistance under field conditions. / Thesis / Master of Science (MS)
42

Molecular studies on the variability and basis of pathogenicity of vascular bacterial pathogens of Musa spp

Thwaites, Richard Mark January 1999 (has links)
No description available.
43

Biology, pathogenicity and diversity of Fusarium oxysporum f.sp. cubense

Groenewald, Susan. January 2005 (has links)
Thesis (M.Sc.)(Microbiology)--University of Pretoria, 2005. / Includes summary. Includes bibliographical references. Available on the Internet via the World Wide Web.
44

Evaluation of polygalacturonase-inhibiting protein (PGIP)-mediated resistance against Verticullium dahliae, a fungal pathogen of potato

Maritz, Inge. January 2005 (has links)
Thesis (M.Sc.)(Plant Biotechnology))--University of Pretoria, 2002. / Summaries in Afrikaans and English. Includes bibliographical references.
45

Cotton Seeds Can Carry Verticillium-Wilt Fungus

Brown, J.G., Allen, Ross M. 02 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
46

Vascular occlusion in potato stems inoculated with Verticillium albo-atrum

Ferrari, Jacinta Mary. January 1984 (has links)
No description available.
47

MOLECULAR CHARACTERIZATION OF THE INTERACTION BETWEEN HELIANTHUS ANNUUS AND VERTICILLIUM DAHLIAE

YAO, ZHEN 23 December 2009 (has links)
Verticillium wilt, caused by the soil-borne Verticillium dahliae Klebahn is a serious problem in the production of sunflower worldwide. To date, information on sunflower resistance to Verticillium spp. is very scarce, although it is critical for an effective management of this pathogen. In this study, two highly aggressive (Vd1396-9 and Vd1398-21) and two weakly aggressive V. dahliae isolates (Vs06-07 and Vs06-14) were used to inoculate moderately resistant (IS6111) and susceptible (IS8048) sunflower hybrids. VdNEP (V. dahliae necrosis and ethylene-inducing protein), an elicitor from V. dahliae, was also used to infiltrate sunflower plants. Our results indicate that VdNEP has a dual role in the interaction between sunflower and V. dahliae. VdNEP acted not only as a pathogenicity factor on sunflower by inducing wilting symptoms such as chlorosis, necrosis and vascular discoloration, but also as an elicitor triggering defense responses of the host. VdNEP induced the hypersensitive cell death in Nicotiana benthamiana leaves and sunflower cotyledons. Moreover, VdNEP activated the production of reactive oxygen species and the accumulation of fluorescent compounds in sunflower leaves. Pathogenesis-related genes (Ha-PR-3, and Ha-PR-5), two defensin genes (Ha-PDF and Ha-CUA1) and genes encoding Ha-ACO, Ha-CHOX, Ha-GST and Ha-SCO were up-regulated by VdNEP, suggesting that multiple signaling pathways are involved in this interaction. Two SA-related genes (Ha-PAL and Ha-NML1) were slightly suppressed after infiltration with VdNEP, suggesting a possible involvement of VdNEP in affecting sunflower defenses.
48

MOLECULAR CHARACTERIZATION OF THE INTERACTION BETWEEN HELIANTHUS ANNUUS AND VERTICILLIUM DAHLIAE

YAO, ZHEN 23 December 2009 (has links)
Verticillium wilt, caused by the soil-borne Verticillium dahliae Klebahn is a serious problem in the production of sunflower worldwide. To date, information on sunflower resistance to Verticillium spp. is very scarce, although it is critical for an effective management of this pathogen. In this study, two highly aggressive (Vd1396-9 and Vd1398-21) and two weakly aggressive V. dahliae isolates (Vs06-07 and Vs06-14) were used to inoculate moderately resistant (IS6111) and susceptible (IS8048) sunflower hybrids. VdNEP (V. dahliae necrosis and ethylene-inducing protein), an elicitor from V. dahliae, was also used to infiltrate sunflower plants. Our results indicate that VdNEP has a dual role in the interaction between sunflower and V. dahliae. VdNEP acted not only as a pathogenicity factor on sunflower by inducing wilting symptoms such as chlorosis, necrosis and vascular discoloration, but also as an elicitor triggering defense responses of the host. VdNEP induced the hypersensitive cell death in Nicotiana benthamiana leaves and sunflower cotyledons. Moreover, VdNEP activated the production of reactive oxygen species and the accumulation of fluorescent compounds in sunflower leaves. Pathogenesis-related genes (Ha-PR-3, and Ha-PR-5), two defensin genes (Ha-PDF and Ha-CUA1) and genes encoding Ha-ACO, Ha-CHOX, Ha-GST and Ha-SCO were up-regulated by VdNEP, suggesting that multiple signaling pathways are involved in this interaction. Two SA-related genes (Ha-PAL and Ha-NML1) were slightly suppressed after infiltration with VdNEP, suggesting a possible involvement of VdNEP in affecting sunflower defenses.
49

The manipulation of apoptosis-related genes to generate resistance to Fusarium wilt and water stress in banana

Paul, Jean-Yves January 2009 (has links)
Bananas are susceptible to a diverse range of biotic and abiotic stresses, many of which cause serious production constraints worldwide. One of the most destructive banana diseases is Fusarium wilt caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense (Foc). No effective control strategy currently exists for this disease which threatens global banana production. Although disease resistance exists in some wild bananas, attempts to introduce resistance into commercially acceptable bananas by conventional breeding have been hampered by low fertility, long generation times and association of poor agronomical traits with resistance genes. With the advent of reliable banana transformation protocols, molecular breeding is now regarded as a viable alternative strategy to generate disease-resistant banana plants. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi. Further, the transgenic plants showed increased resistance to a range of abiotic stresses. In this thesis, the use of anti-apoptosis genes to generate transgenic banana plants with resistance to Fusarium wilt was investigated. Since water stress is an important abiotic constraint to banana production, the resistance of the transgenic plants to water stress was also examined. Embryogenic cell suspensions (ECS) of two commercially important banana cultivars, Grand Naine (GN) and Lady Finger (LF), were transformed using Agrobacterium with the anti-apoptosis genes, Bcl-xL, Bcl-xL G138A, Ced-9 and Bcl- 2 3’ UTR. An interesting, and potentially important, outcome was that the use of anti-apoptosis genes resulted in up to a 50-fold increase in Agrobacterium-mediated transformation efficiency of both LF and GN cells over vector controls. Regenerated plants were subjected to a complete molecular characterisation in order to detect the presence of the transgene (PCR), transcript (RT-PCR) and gene product (Western blot) and to determine the gene copy number (Southern blot). A total of 36 independently-transformed GN lines (8 x Bcl-xL, 5 x Bcl-xL G138A, 15 x Ced-9 and 8 x Bcl-2 3’ UTR) and 41 independently-transformed LF lines (8 x Bcl-xL, 7 x BclxL G138A, 13 x Ced-9 and 13 x Bcl-2 3’ UTR) were identified. The 41 transgenic LF lines were multiplied and clones from each line were acclimatised and grown under glasshouse conditions for 8 weeks to allow monitoring for phenotypic abnormalities. Plants derived from 3 x Bcl-xL, 2 x Ced-9 and 5 x Bcl-2 3’ UTR lines displayed a variety of aberrant phenotypes. However, all but one of these abnormalities were off-types commonly observed in tissue-cultured, non-transgenic banana plants and were therefore unlikely to be transgene-related. Prior to determining the resistance of the transgenic plants to Foc race 1, the apoptotic effects of the fungus on both wild-type and Bcl-2 3’ UTR-transgenic LF banana cells were investigated using rapid in vitro root assays. The results from these assays showed that apoptotic-like cell death was elicited in wild-type banana root cells as early as 6 hours post-exposure to fungal spores. In contrast, these effects were attenuated in the root cells of Bcl-2 3’ UTR-transgenic lines that were exposed to fungal spores. Thirty eight of the 41 transgenic LF lines were subsequently assessed for resistance to Foc race 1 in small-plant glasshouse bioassays. To overcome inconsistencies in rating the internal (vascular discolouration) disease symptoms, a MatLab-based computer program was developed to accurately and reliably assess the level of vascular discolouration in banana corms. Of the transgenic LF banana lines challenged with Foc race 1, 2 x Bcl-xL, 3 x Ced-9, 2 x Bcl-2 3’ UTR and 1 x Bcl-xL G138A-transgenic line were found to show significantly less external and internal symptoms than wild-type LF banana plants used as susceptible controls at 12 weeks post-inoculation. Of these lines, Bcl-2 3’ UTR-transgenic line #6 appeared most resistant, displaying very mild symptoms similar to the wild-type Cavendish banana plants that were included as resistant controls. This line remained resistant for up to 23 weeks post-inoculation. Since anti-apoptosis genes have been shown to confer resistance to various abiotic stresses in other crops, the ability of these genes to confer resistance against water stress in banana was also investigated. Clonal plants derived from each of the 38 transgenic LF banana plants were subjected to water stress for a total of 32 days. Several different lines of transgenic plants transformed with either Bcl-xL, Bcl-xL G138A, Ced-9 or Bcl-2 3’ UTR showed a delay in visual water stress symptoms compared with the wild-type control plants. These plants all began producing new growth from the pseudostem following daily rewatering for one month. In an attempt to determine whether the protective effect of anti-apoptosis genes in transgenic banana plants was linked with reactive oxygen species (ROS)-associated programmed cell death (PCD), the effect of the chloroplast-targeting, ROS-inducing herbicide, Paraquat, on wild-type and transgenic LF was investigated. When leaf discs from wild-type LF banana plants were exposed to 10 ìM Paraquat, complete decolourisation occurred after 48 hours which was confirmed to be associated with cell death and ROS production by trypan blue and 3,3-diaminobenzidine (DAB) staining, respectively. When leaf discs from the transgenic lines were exposed to Paraquat, those derived from some lines showed a delay in decolourisation, suggesting only a weak protective effect from the transgenes. Finally, the protective effect of anti-apoptosis genes against juglone, a ROS-inducing phytotoxin produced by the causal agent of black Sigatoka, Mycosphaerella fijiensis, was investigated. When leaf discs from wild-type LF banana plants were exposed to 25 ppm juglone, complete decolourisation occurred after 48 hours which was again confirmed to be associated with cell death and ROS production by trypan blue and DAB staining, respectively. Further, TdT-mediated dUTP nick-end labelling (TUNEL) assays on these discs suggested that the cell death was apoptotic. When leaf discs from the transgenic lines were exposed to juglone, discs from some lines showed a clear delay in decolourisation, suggesting a protective effect. Whether these plants are resistant to black Sigatoka is unknown and will require future glasshouse and field trials. The work presented in this thesis provides the first report of the use of anti-apoptosis genes as a strategy to confer resistance to Fusarium wilt and water stress in a nongraminaceous monocot, banana. Such a strategy may be exploited to generate resistance to necrotrophic pathogens and abiotic stresses in other economically important crop plants.
50

Visual miscuing of thrips to reduce the incidence of tomato spotted wilt virus in tomatoes

Croxton, Scott David, Foshee, Wheeler G., January 2008 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2008. / Abstract. Vita. Includes bibliographical references.

Page generated in 0.0237 seconds