• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 291
  • 73
  • 43
  • 24
  • 24
  • 14
  • 8
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 622
  • 622
  • 121
  • 121
  • 103
  • 95
  • 80
  • 69
  • 66
  • 63
  • 62
  • 61
  • 61
  • 58
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Fuzzy based CRRM for load balancing in heterogenous wireless networks

Ali, Muhammad, Pillai, Prashant, Hu, Yim Fun, Xu, Kai J., Cheng, Yongqiang, Pillai, Anju January 2013 (has links)
No / The ever increasing user QoS demands and emergence of new user applications make job of network operators and manufacturers more challenging for efficiently optimisation and managing radio resources in radio the radio resources pools of different wireless networks. A group of strategies or mechanisms which are collectively responsible for efficient utilisation of radio resources available within the Radio Access Technologies (RAT) are termed as Radio Resource Management (RRM). The traditional RRM strategies are implemented independently in each RAT, as each RRM strategy considers attributes of a particular access technology. Therefore traditional RRM strategies are not suitable for heterogeneous wireless networks. Common Radio Resource Management (CRRM) or joint radio resource management (JRRM) strategies are proposed for coordinating radio resource management between multiple RATs in an improved manner. In this paper a fuzzy algorithm based CRRM strategy is presented to efficiently utilise the available radio resources in heterogeneous wireless networks. The proposed CRRM strategy balances the load in heterogeneous wireless networks and avoids the unwanted congestion situation. The results such as load distribution, packet drop rate and average throughput at mobile nodes are used to demonstrate the benefits of load balancing in heterogeneous wireless networks using proposed strategy.
82

Load-aware radio access selection in future generation wireless networks

Ali, Muhammad, Pillai, Prashant, Hu, Yim Fun January 2013 (has links)
No / In the telecommunication networks the introduction of Next Generation Wireless Networks (NGWN) has been described as the most significant change in wireless communication. The convergence of different access networks in NGWN allows generalized mobility, consistency and ubiquitous provision of services to mobile users. The general target of NGWN is to transport different types of information like voice, data, and other media like video in packets form like IP. The NGWNs offer significant savings in costs to the operators along with new and interesting services to the consumers. Major challenges in NGWN are efficient resource utilization, maintaining service quality, reliability and the security. This paper proposes a solution for seamless load aware Radio Access Technology (RAT) selection based on interworking of different RATs in NGWN. In this paper novel load balancing algorithms have been proposed which have been simulated on the target network architecture for TCP data services. The IEEE 802.21 Media Independent Handover (MIH) is utilized in load balancing specifically for mobility management, which enable low handover latency by reducing the target network detection time. The proposed method considers the network type, signal strength, data rate and network load as primary decision parameters for RAT selection process and consists of two different algorithms, one located in the mobile terminal and the other at the network side. The network architecture, the proposed load balancing framework and RAT selection algorithms were simulated using NS2. Different attributes like load distribution in the wireless networks and average throughput to evaluate the effects of load balancing in considered scenarios.
83

Enhancing the energy efficiency of radio base stations

Holtkamp, Hauke Andreas January 2014 (has links)
This thesis is concerned with the energy efficiency of cellular networks. It studies the dominant power consumer in future cellular networks, the Long Term Evolution (LTE) radio Base Station (BS), and proposes mechanisms that enhance the BS energy efficiency by reducing its power consumption under target rate constraints. These mechanisms trade spare capacity for power saving. First, the thesis describes how much power individual components of a BS consume and what parameters affect this consumption based on third party experimental data. These individual models are joined into a component power model for an entire BS. The component model is an essential step in analysis but is too complex for many applications. It is therefore abstracted into a much simpler parameterized model to reduce its complexity. The parameterized model is further simplified into an affine model which can be applied in power minimization. Second, Power Control (PC) and Discontinuous Transmission (DTX) are identified as promising power-saving Radio Resource Management (RRM) mechanisms and applied to multi-user downlink transmission. PC reduces the power consumption of the Power Amplifier (PA) and is found to be most effective at high traffic loads. DTX mostly reduces the power consumption of the Baseband (BB) unit while interrupting transmission and is better applied in low traffic loads. Joint optimization of these two techniques is found to enable additional power-saving at medium traffic loads and to be a convex problem which can be solved efficiently. The convex problem is extended to provide a comprehensive power-saving Orthogonal Frequency Division Multiple Access (OFDMA) frame resource scheduler. The proposed scheduler is shown to reduce power consumption by 25-40% in computer simulations, depending on the traffic load. Finally, the thesis investigates the influence of interference on power consumption in a network of multiple power-saving BSs. It discusses three popular alternative distributed uncoordinated methods which align DTX mode between neighbouring BSs. To address drawbacks of these three, a fourth memory-based DTX alignment method is proposed. It decreases power consumption by up to 40% and retransmission probability by around 20%, depending on the traffic load.
84

Self organizing networks : building traffic and environment aware wireless systems

Rengarajan, Balaji 21 October 2009 (has links)
This dissertation investigates how to optimize flow-level performance in interference dominated wireless networks serving dynamic traffic loads. The schemes presented in this dissertation adapt to long-term (hours) spatial load variations, and the main metrics of interest are the file transfer delay or average flow throughput and the mean power expended by the transmitters. The first part presents a system level approach to interference management in an infrastructure based wireless network with full frequency reuse. The key idea is to use loose base station coordination that is tailored to the spatial load distribution and the propagation environment to exploit the diversity in a user population's sensitivity to interference. System architecture and abstractions to enable such coordination are developed for both the downlink and the uplink cases, which present differing interference characteristics. The basis for the approach is clustering and aggregation of traffic loads into classes of users with similar interference sensitivities that enable coarse grained information exchange among base stations with greatly reduced communication overheads. The dissertation explores ways to model and optimize the system under dynamic traffic loads where users come and go resulting in interference induced performance coupling across base stations. Based on extensive system-level simulations, I demonstrate load-dependent reductions in file transfer delay ranging from 20-80% as compared to a simple baseline not unlike systems used in the field today, while simultaneously providing more uniform coverage. Average savings in user power consumption of up to 75% are achieved. Performance results under heterogeneous spatial loads illustrate the importance of being traffic and environment aware. The second part studies the impact of policies to associate users with base stations/access points on flow-level performance in interference limited wireless networks. Most research in this area has used static interference models (i.e., neighboring base stations are always active) and resorted to intuitive objectives such as load balancing. In this dissertation, it is shown that this can be counter productive, and that asymmetries in load can lead to significantly better performance in the presence of dynamic interference which couples the transmission rates experienced by users at various base stations. A methodology that can be used to optimize the performance of a class of coupled systems is proposed, and applied to study the user association problem. It is demonstrated that by properly inducing load asymmetries, substantial performance gains can be achieved relative to a load balancing policy (e.g., 15 times reduction in mean delay). A novel measurement based, interference-aware association policy is presented that infers the degree of interference induced coupling and adapts to it. Systematic simulations establish that both the optimized static and interference-sensitive, adaptive association policies substantially outperform various proposed dynamic policies and that these results are robust to changes in file size distributions, channel parameters, and spatial load distributions. / text
85

Routing Protocols for Indoor Wireless Ad-Hoc Networks : A Cross-Layer Perspective

Dricot, Jean-Michel PP 01 June 2007 (has links)
The all-over trend for an universal access and ubiquitous access to the Internet is driving a revolution in our societies. In order to support this era of nomadic applications, new flexible network architectures have emerged. They are referred to as “wireless ad-hoc networks.” Since human-operated devices will more likely be used indoor, it leads to many issues related to the strength of the fading in this environment. Recently, it has been suggested that a possible interaction might exist between various parameters of the ad-hoc networks and, more precisely, between the propagation model and the routing protocol. To address this question, we present in this dissertation a cross-layer perspective of the analysis of these indoor ad-hoc networks. Our reasoning is made of four stages. First, the cross-layer interactions are analyzed by the means of multivariate statistical techniques. Since a cross-layering between the physical layer and the routing protocol has been proven to be significant, we further investigate the possible development a physical layer-constrained routing algorithm. Second, fundamental equations governing the wireless telecommunications systems are developed in order to provide insightful informations on how a reliable routing strategy should be implemented in a strongly-faded environment. After that, and in order to allow a better spatial reuse, the routing protocol we propose is further enhanced by the adjonction of a power control algorithm. This last feature is extensively analyzed and a closed-form expression of the link probability of outage in presence of non-homogeneous transmission powers is given. Numerous simulations corroborate the applicability and the performance of the derived protocol. Also, we evaluate the gain, in terms of radio channel ressources, that has been achieved by the means of the power control algorithm. Third, an architecture for the interconnection with a cellular network is investigated. A closed-form expression of the relaying stability of a node is given. This equation expresses the minimal requirement that a relaying node from the ad-hoc network must fullfil in order to bridge properly the connections to the base-station. Finally, a real-life implementation is provided as a validation of the applicability of this novel ad-hoc routing protocol. It is concluded that, both from the performance and the spatial re-use point-of-views, it can be taken advantage from the cross-layering between the physical and the routing layers to positively enhance the networking architectures deployed in an indoor environment.
86

Towards a reliable seamless mobility support in heterogeneous IP networks

Khan, Shoaib January 2009 (has links)
Next Generation networks (3G and beyond) are evolving towards all IP based systems with the aim to provide global coverage. For Mobility in IP based networks, Mobile IPv6 is considered as a standard by both industry and research community, but this mobility protocol has some reliability issues. There are a number of elements that can interrupt the communication between Mobile Node (MN) and Corresponding Node (CN), however the scope of this research is limited to the following issues only: • Reliability of Mobility Protocol • Home Agent Management • Handovers • Path failures between MN and CN First entity that can disrupt Mobile IPv6 based communication is the Mobility Anchor point itself, i.e. Home Agent. Reliability of Home Agent is addressed first because if this mobility agent is not reliable there would be no reliability of mobile communication. Next scenario where mobile communication can get disrupted is created by MN itself and it is due to its mobility. When a MN moves around, at some point it will be out of range of its active base station and at the same time it may enter the coverage area of another base station. In such a situation, the MN should perform a handover, which is a very slow process. This handover delay is reduced by introducing a “make before break” style handover in IP network. Another situation in which the Mobile IPv6 based communication can fail is when there is a path failure between MN and CN. This situation can be addressed by utilizing multiple interfaces of MN at the same time. One such protocol which can utilize multiple interfaces is SHIM6 but it was not designed to work on mobile node. It was designed for core networks but after some modification in the protocol , it can be deployed on mobile nodes. In this thesis, these issues related to reliability of IPv6 based mobile communication have been addressed.
87

Solutions for Dynamic Channel Assignment and Synchronization Problem for Distributed Wireless Multimedia System

Hong, SungBum 08 1900 (has links)
The recent advances in mobile computing and distributed multimedia systems allow mobile hosts (clients) to access wireless multimedia Data at anywhere and at anytime. In accessing multimedia information on the distributed multimedia servers from wireless personal communication service systems, a channel assignment problem and synchronization problems should be solved efficiently. Recent demand for mobile telephone service have been growing rapidly while the electro-magnetic spectrum of frequencies allocated for this purpose remain limited. Any solution to the channel assignment problem is subject to this limitation, as well as the interference constraint between adjacent channels in the spectrum. Channel allocation schemes provide a flexible and efficient access to bandwidth in wireless and mobile communication systems. In this dissertation, both an efficient distributed algorithm for dynamic channel allocation based upon mutual exclusion model, and an efficient distributed synchronization algorithm using Quasi-sink for wireless and mobile multimedia systems to ensure and facilitate mobile client access to multimedia objects are proposed. Algorithm's performance with several channel systems using different types of call arrival patterns is determined analytically. A set of simulation experiments to evaluate the performance of our scheme using message complexity and buffer usage at each frame arrival time.
88

Minimizing the maximum Interference in k-connected wireless networks

Mehrpour, Sahar 21 September 2016 (has links)
Given a set P of n points in R^d, we consider the k-connected interference minimization problem, in which the objective is to assign a transmission radius to each node in P such that the resulting network is k-connected and the maximum interference is minimized. We show for any n and any 1 <= k < n, Omega(sqrt(kn)) and Omega(k log n) are lower bounds on the worst-case minimum maximum interference in the symmetric and asymmetric models, respectively. In the symmetric case, we present polynomial-time algorithms that build a k-connected network on any given set of n nodes with interference O(sqrt(kn)) in one dimension and O(min{k sqrt(n), k log lambda}) in two dimensions, where lambda denotes the ratio of the longest to shortest distances between any pair of nodes. In the asymmetric case, we present a polynomial-time algorithm that builds a strongly k-connected network with maximum interference O(k log lambda) in two dimensions. / October 2016
89

Redes sem fio na indústria de processos: oportunidades e desafios. / Wireless network in the process industries: opportunities and challenges.

Riego, Henrique Barros 15 October 2009 (has links)
A transmissão de dados sem fio se faz presente no cotidiano de nossas vidas. Uma das tecnologias que mais se desenvolveu no início do século XXI é a rede sem fio e essa evolução levou a tecnologia a se difundir na indústria de processos. Em virtude disso, este trabalho tem como objetivo estudar a transmissão de sinais das redes de instrumentos sem fio na indústria de processos, suas topologias e suas características. Para categorizar esta tecnologia no tempo, foi realizado um histórico das transmissões de sinais de campo, desde a transmissão pneumática até as atuais transmissões digitais fiadas. Também foi estudada a evolução dos sensores, que pode ser considerada um dos fatores que possibilitaram a transmissão sem fio. Foi apresentado os conceitos da nova tecnologia como espalhamento espectral, antenas, arquiteturas da rede e as atuais tecnologias WirelessHART e ISA100.11a, para que fosse possível entender os requisitos necessários para o projeto de uma rede de instrumentos sem fio. Baseadas no conceito ISO-OSI das redes convencionais, as redes de instrumentos sem fio possui cinco pilares (confiabilidade, tempo de latência, taxa de transferência, segurança e energia) que devem ser projetados em uma relação de compromisso, garantindo assim uma configuração de ótimo desempenho. Por fim, foi exemplificada a utilização dessa tecnologia através de implantações em algumas unidades de uma usina sucroalcooeira. / The wireless data transmissions are part of our daily lives. The wireless network is the technology that has been most developed in the beginning of the 21st century and this evolution allowed the industry to start considering the wireless technology as a viable option to its reality. Due to that, the aim of this paperwork is to study the wireless instrument network transmission in the process industries, its topologies and its characteristics. In order to categorize this technology over time, a history of signal field transmission was made, since the pneumatic transmission to the digital wired transmission. The sensors evolution was also studied and this can be considered one of the wireless transmission main vectors. It was introduced the concepts of this new technology as spread spectrum, antennas, network architectures and the WirelessHART and ISA100.11a technologies, as a preparation to understand the requirements for the design of a wireless instruments network. Based on the regular network ISO-OSI structure, the wireless instrument network has five columns (trustability, latency time, throughput, security and energy) that have to be designed in a commitment relation, ensuring an optimal performance configuration. In the end, it was exemplified the use of the technology through the implementation of some units in the sugarcane industry.
90

Energy efficient packet size optimization for wireless ad hoc networks

Mobin, Iftekharul January 2014 (has links)
Energy efficiency is crucial for ad hoc networks because of limited energy stored in the battery. Recharging the nodes frequently is sometimes not possible. Therefore, proper energy utilization is paramount. One possible solution of increasing energy efficiency is to optimize the transmitted packet size. But, we claim that only optimal packet size can not boost the energy efficiency in the noisy channel due to high packet loss rate and overhead. Hence, to reduce the overhead size and packet loss, compression and Forward Error Correction (FEC) code are used as remedy. However, every method has its own cost. For compression and FEC, the costs are computation energy cost and extra processing time. Therefore, to estimate the energy-optimize packet size with FEC or compression, processing energy cost and delay need to be considered for precise estimation. Otherwise, for delay sensitive real time applications (such as: VoIP, multimedia) over ad hoc network, energy efficient optimal packet size can be overestimated. We will investigate without degrading the Quality of Service (QoS) with these two different techniques FEC and compression, how much energy efficiency can be achieved by using the energy efficient optimal packet size for different scenarios such as: single hop, multi-hop, multiple source congested network etc. This thesis also shows the impact of time variable channel, packet fragmentation, packet collision on the optimal packet size and energy efficiency. Our results show that, for larger packets, error correction improves the energy efficiency in multi-hop networks only for delay tolerant applications. Whereas for smaller packets, compression is more energy efficient most of the cases. For real-time application like VoIP the scope of increasing the energy efficiency by optimizing packet after maintaining all the constraints is very limited. However, it is shown that, in many cases, optimal packet size improves energy efficiency significantly and also reduces the overall packet loss.

Page generated in 0.0727 seconds