• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical-layer security: practical aspects of channel coding and cryptography

Harrison, Willie K. 21 June 2012 (has links)
In this work, a multilayer security solution for digital communication systems is provided by considering the joint effects of physical-layer security channel codes with application-layer cryptography. We address two problems: first, the cryptanalysis of error-prone ciphertext; second, the design of a practical physical-layer security coding scheme. To our knowledge, the cryptographic attack model of the noisy-ciphertext attack is a novel concept. The more traditional assumption that the attacker has the ciphertext is generally assumed when performing cryptanalysis. However, with the ever-increasing amount of viable research in physical-layer security, it now becomes essential to perform the analysis when ciphertext is unreliable. We do so for the simple substitution cipher using an information-theoretic framework, and for stream ciphers by characterizing the success or failure of fast-correlation attacks when the ciphertext contains errors. We then present a practical coding scheme that can be used in conjunction with cryptography to ensure positive error rates in an eavesdropper's observed ciphertext, while guaranteeing error-free communications for legitimate receivers. Our codes are called stopping set codes, and provide a blanket of security that covers nearly all possible system configurations and channel parameters. The codes require a public authenticated feedback channel. The solutions to these two problems indicate the inherent strengthening of security that can be obtained by confusing an attacker about the ciphertext, and then give a practical method for providing the confusion. The aggregate result is a multilayer security solution for transmitting secret data that showcases security enhancements over standalone cryptography.

Page generated in 0.0347 seconds