Spelling suggestions: "subject:"X yay diffraction"" "subject:"X aay diffraction""
711 |
Charge transfer at the high-temperature superconductor/liquid electrolyte interfaceLe Poul, Nicolas January 2001 (has links)
No description available.
|
712 |
The O2 electrode performance in the Li-O2 batteryLiu, Jia January 2015 (has links)
Li-O2 batteries have been attracting increasing attention and R&D efforts as promising power sources for electric vehicles (EVs) due to their significantly higher theoretical energy densities compared to conventional Li-ion batteries. The research presented in this thesis covers the investigation of factors influencing the decomposition of Li2O2, the development of highly active electrocatalysts, and the design of low-cost and easy-operation binder-free O2 electrodes for Li-O2 batteries. Being the main technique, SR-PXD was used both as a continuous light source to advance the electrochemical decomposition of Li2O2 under the X-ray illumination and an operando tool that allowed us to probe the degradation of Li2O2. Since XRD was intensively used in my thesis work, the effect of X-ray irradiation on the stability of Li2O2 was studied. The accelerating effect of X-rays on the electrochemical decomposition of Li2O2 was, for the first time, explored. The electrochemical decomposition rate of Li2O2 was proportional to the X-ray intensity used. It is proposed that the decomposition might involve a three-step reaction with [Li2O2]x+ and Li2-xO2* as intermediates, which followed pseudo-zero-order kinetics. Then, three electrocatalysts (Pt/MNT, Ru/MNT and Li2C8H2O6) were developed, which exhibited good electrocatalytic performances during the OER. Their activities were evaluated by following the Li2O2 decomposition in electrodes during the charging processes. In addition, the time-resolved OER kinetics for the electrocatalyst-containing Li-O2 cells charged galvanostatically and potentiostatically was systematically investigated using operando SR-PXD. It was found that a small amount of Pt or Ru decoration on the MNTs enhanced the OER efficiency in a Li-O2 cell. The Li2O2 decomposition of an electrode with 5 wt% Pt/MNT, 2 wt% Ru/MNT or Li2C8H2O6 in a Li-O2 cell followed pseudo-zero-order kinetics. Finally, a novel binder-free NCPE for Li-O2 batteries was presented. It displayed a bird’s nest microstructure, which could provide the self-standing electrode with considerable mechanic durability, fast O2 diffusion and enough space for the discharge product deposition. The NCPE contained N-containing functional groups, which may promote the electrochemical reactions.
|
713 |
Investigating co-crystallisation of primary amides and carboxylic acids : comparative analysis of Benzamide, Isonicotinamide and Nicotinamide co-crystal growth with carboxylic acidJaved, Hafsa Shamim January 2010 (has links)
Crystal Engineering is the design of crystalline material using non-covalent synthesis. Co-crystals are multi-component crystals which are constructed from complementary intermolecular interactions, they are also known as supramolecular complexes. Design of such materials utilises the synthon approach, this involves the understanding of common intermolecular interactions which occur in the crystal packing and is used to design new solids with desired physical properties and chemical properties. Primary amides form supramolecular heterosynthons, these synthons represent an opportunity for a design of multi-component crystals in which one molecule contains a primary amide and a second molecule which is complimentary to the primary amide, usually carboxylic acids. The progress with regards to the screening process for the determination of co-crystals is evident in the literature, In particular, high throughput solution growth methods and solvent drop grinding. The comparison of Isonicotinamide and Benzamide as a co-crystal component has been presented. This study was motivated by the observation that the CSD contains 24 Isonicotinamide and 1 Benzamide co-crystal. The interaction with carboxylic acids is the focus of the work, in particular those which form Isonicotinamide co-crystal are being screened with Benzamide. Our work utilises a ReactArray Microvate to carry out the low throughput solution growth on a matrix of carboxylic acid with Benzamide, this study has been coupled with the Kofler hot stage microscope method which visually aids to screen and view co-crystal phase formation. Crystallisation screens have resulted in the identification of known co-crystal phases of Isonicotinamide and Benzamide, additionally new co-crystal phases have also been identified with Fumaric, 3-hydroxybenzoic acid, Mandelic Acid, 4-Nitrobenzoic Acid and Tartaric Acid. Single crystal structures of the Fumaric and 4-Nitrobenzoic acid have been obtained. In order to develop an understanding of co-crystal formation in Isonicotinamide and Benzamide with our supramolecular library, packing landscape analysis is being undertaken using both the CSD and crystal structures we have obtained. This is undertaken as collaboration with Dr Andy Parkin and Professor Gilmore (University of Glasgow), we have identified that the dSNAP analysis is a way forward for the analysis of how co-crystals pack. The analysis highlighted the subtleties that were present in the packing motifs of the Isonicotinamide co-crystals. In particular the cis and trans orientation of the amide and acid carbonyl to each other and the planar and off planar layer assemblies. All of which are required to maximise the hydrogen bond usage of the components comprising the co-crystals. Further investigations have led to the collaborative project with Syngenta Ltd in the design of a co-crystal screen using a high through-put robot, Crissy® -Automation Platform by Zinsser Analytical, using an extended screen of 16 acid coformers with Isonicotinamide, Benzamide and Nicotinamide the sample have been characterised using a reflectance diffraction method, GADDS. Further analysis of this data involves the use of polySNAP, which has led to further collaboration with Professor Gilmore's group.
|
714 |
Epitaxy and characterization of SiGeC layers grown by reduced pressure chemical vapor depositionHållstedt, Julius January 2004 (has links)
<p>Heteroepitaxial SiGeC layers have attracted immenseattention as a material for high frequency devices duringrecent years. The unique properties of integrating carbon inSiGe are the additional freedom for strain and bandgapengineering as well as allowing more aggressive device designdue to the potential for increased thermal budget duringprocessing. This work presents different issues on epitaxialgrowth, defect density, dopant incorporation and electricalproperties of SiGeC epitaxial layers, intended for variousdevice applications.</p><p>Non-selective and selective epitaxial growth of Si<sub>1-x-y</sub>Ge<sub>x</sub>C<sub>y</sub>(0≤x≤30, ≤y≤0.02) layershave been optimized by using high-resolution x-ray reciprocallattice mapping. The incorporation of carbon into the SiGematrix was shown to be strongly sensitive to the growthparameters. As a consequence, a much smaller epitaxial processwindow compared to SiGe epitaxy was obtained. Differentsolutions to decrease the substrate pattern dependency (loadingeffect) of SiGeC growth have also been proposed. The key pointin these methods is based on reduction of surface migration ofthe adsorbed species on the oxide. In non-selective epitaxy,this was achieved by introducing a thin silicon polycrystallineseed layer on the oxide. The thickness of this seed layer had acrucial role on both the global and local loading effect, andon the epitaxial quality. Meanwhile, in selective epitaxy,polycrystalline stripes introduced around the oxide openingsact as migration barriers and reduce the loading effecteffectively. Chemical mechanical polishing (CMP) was performedto remove the polycrystalline stripes on the oxide.</p><p>Incorporation and electrical properties of boron-doped Si<sub>1-x-y</sub>Ge<sub>x</sub>C<sub>y</sub>layers (x=0.23 and 0.28 with y=0 and 0.005) with aboron concentration in the range of 3x10<sup>18</sup>-1x10<sup>21</sup>atoms/cm3 have also been investigated. In SiGeClayers, the active boron concentration was obtained from thestrain compensation. It was also found that the boron atomshave a tendency to locate at substitutional sites morepreferentially compared to carbon. These findings led to anestimation of the Hall scattering factor of the SiGeC layers,which showed good agreement with theoretical calculations.</p><p><b>Keywords:</b>Silicon germanium carbon (SiGeC), Epitaxy,Chemical vapor deposition (CVD), Loading effect, Highresolution x-ray diffraction (HRXRD), Hall measurements, Atomicforce microscopy (AFM).</p>
|
715 |
Growth and characterization of Niâ†xCuâ†1â†-â†x alloy films, Niâ†xCuâ†1â†-â†x/Niâ†yCuâ†1â†-â†y multilayers, and nanowiresKazeminezhad, Iraj January 2001 (has links)
No description available.
|
716 |
Crystallisation and structural studies of monodisperse nylon oligomers and related polymersSikorski, Pawel Tadeusz January 2001 (has links)
No description available.
|
717 |
Spin coating of passive electroactive ceramic devicesCarson, Emma January 2001 (has links)
No description available.
|
718 |
An investigation of stoichiometetry and thermo-mechanical processing parameters of (Pb,Bi)â†2Srâ†2Caâ†2Cuâ†3Oâ†x superconducting tapesFeltham, Stuart Paul January 2001 (has links)
No description available.
|
719 |
Structure and properties of MTiOXOâ†4 crystalsLatham, Tina Joy January 2000 (has links)
No description available.
|
720 |
Properties of yttrium iron garnet thin films grown by pulsed laser ablation depositionIbrahim, Noor Baa'yah January 1999 (has links)
No description available.
|
Page generated in 0.1097 seconds