1 |
A study of PbSnTe diode lasers fabricated by compositional interdiffusion techniqueAl-Salhi, Mohammed January 1988 (has links)
No description available.
|
2 |
X-Ray Emission Analysis Using Radioisotopic Alpha-Particle ExcitationRobertson, Robert 09 1900 (has links)
<p> The combined capabilities of alpha-particle emitting isotopic excitation sources and modern semiconductor detectors are investigated with a view to extending the light-element range of radioisotope-based X-ray emission analysis.</p> <p> The construction and performance of a windowless low-energy X-ray spectrometer designed around a lithium-drifted
silicon detector and a 210Po source are discussed. It is shown that under the conditions used low-energy X-ray emission and detection are greatly favoured.</p> <p> Measurements of relative cross-sections for the production of X-rays by ~5.2 MeV alpha-particles in elements
from oxygen to iron are reported. The results for elements of Z>16 are in good agreement with those predicted from the scaling of equal velocity proton values but show large positive
deviations for elements of Z<16.</p> <p> Investigative applications of the spectrometer to
quantitative analyses of blast-furnace slags, iron ores and silicate rocks for oxygen, silicon, sulpher, calcium and iron are described.</p> <p> The future prospects of radioisotopic alpha-particle X-ray excitation methods are surveyed.</p> / Thesis / Doctor of Philosophy (PhD)
|
3 |
X-ray scattering in giant magneto-resistive multilayersFulthorpe, Brian David January 1999 (has links)
The scattering mechanisms responsible for Giant Magneto-Resistance (OMR) in magnetic multilayers are believed to be related to many aspects of the multilayer structure. X-ray scattering techniques provide a powerful method with which to study the bulk and interface morphology in these systems, and are therefore crucial in developing an understanding of the dominant factors influencing the magnitude of the OMR. Reflectivity measurements performed on a series of Co/Cu multilayers, sputter deposited onto etched silicon, reveal no variation in the interface roughness with etching voltage, the thickness of the individual layers also remaining constant. The observed decrease in the OMR cannot, therefore, be attributed to variations in spacer thickness or interfacial spin-independent scattering. Electron and X-ray Diffraction measurements suggest the reduction in GMR is due to a loss of antiferromagnetic coupling associated with a transformation of the texture from a randomly oriented to well oriented (111) polycrystalline texture, and subsequent reduction in the volume fraction of (100) oriented grains. Interfaces within Co/Cu are found to propagate with a high degree of conformality with increasing bilayer number, with an out-of-plane correlation length well in excess of 300Å. In contrast, the Co/Pt system exhibits a limiting out-of-plane correlation length of the order of 350Å arising from a columnar growth mode. X-ray Reflectivity and Diffraction measurements provide no structural interpretation for the 3-fold enhancement in the rate of increase of the saturation conductivity, as a function of spacer thickness, in Fe/Au (100) compared to Fe/Au (111), or why large oscillations in the GMR occur for the (100) orientation only. Such observations are, however, consistent with the existence of a channelling mechanism in Fe/Au (100). Grazing Incidence Fluorescence data indicates that Nb acts as a surfactant in Fe/Au (111) growth on sapphire. The influence of different defect types within multilayers has also been observed.
|
4 |
The Study of Diffuse Soft X-Ray BackgroundGupta, Anjali 15 May 2009 (has links)
The cosmic X-ray background was discovered at the dawn of the X-ray astronomy: during the first successful rocket flight launched to study the X-ray emission from the Moon, the presence of a residual diffuse emission was also "serendipitously" revealed. In the intervening decades, observations with improving angular and spectral resolution have enhanced our understanding of the components that make up this background. Above 1 keV, the emission is highly isotropic on large angular scales, has extragalactic origin, and about ~80 percent has been resolved into discrete sources (Mushotzky et al. 2000, Hasinger et al. 1998). Our current interpretation of the diffuse X-ray emission below 1 keV uses a combination of 5 components, solar wind charge exchange, Local Bubble, Galactic halo, intergalactic gas, and unresolved point sources. Resolving the different components is made particularly difficult by the similar spectral emission of most components, X-ray lines of heavily ionized metals, which are poorly resolved by the energy resolution of CCD cameras onboard current X-ray satellites with typical observing times. The goal of this investigation is to assess the integral emission of the major components of the diffuse Soft X-Ray Background. In the first part of my project, I analyzed the shadow observations performed with XMM-Newton and Suzaku X-ray observatories. Shadow observations offer a tool to separate the fore ground component, due to the Local Bubble and, possibly, charge exchange within the solar system, from the background component, due primarily to the Galactic Halo and unidentified point sources. In the second part of my project, I studied the contribution of unresolved point sources and intergalactic medium to the diffuse Soft X-ray Background.
|
5 |
Multienergetic external-beam PIXE as a means of studying the surface enrichment effect in coins /Perry, Scott E. January 2003 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Physics and Astronomy, 2003. / Includes bibliographical references (p. 57-59).
|
6 |
Electronic Structure Studies Using Resonant X-ray and Photemission SpectroscopyMagnuson, Martin January 1999 (has links)
This thesis addresses the electronic structure of molecules and solids using resonant X-ray emission and photoemission spectroscopy. The use of monochromatic synchrotron radiation and the improved performance of the instrumentation have opened up the possibility of detailed analyses of the response of the electronic systems under interaction with X-rays. The experimental studies are accompanied by numerical ab initio calculations in the formalism of resonant inelastic scattering. The energy selectivity has made it possible for the first time to study how the chemical bonds in a molecule break up during resonant inelastic X-ray scattering. In the conjugated polymer systems, the element selectivity of the X-ray emission process made it possible to probe the different atomic elements separately. The X-ray emission technique proved to be useful for extracting isomeric information, and for measuring the change in the valence levels at different degrees of doping. In this thesis, spectral satellite features in transition metals were thoroughly investigated for various excitation energies around a core-level threshold. By measuring the relative spectral intensity of the satellites it was possible to extract information on the partial core-level widths. Using the nickel metal system as an example, it was shown that it is possible to probe the different core-excited states close toshake-up thresholds by measuring the relative spectral intensity variation of the Auger emission.Resonant photoemission measurements showed unambiguous evidence of interference effects. Theseeffects were also thoroughly probed using angle-dependent measurements. The combination of X-rayemission and absorption were useful for studying buried layers and interfaces due to the appreciable penetration depth of soft X-rays. X-ray scattering was further found to be useful for studying low-energy excited states of rare earth metallic compounds and transition metal oxides.
|
7 |
Soft X-ray Scattering Dynamics Close to Core Ionization Thresholds in Atoms and MoleculesSöderström, Johan January 2007 (has links)
<p>In this Thesis studies of highly excited states in gas-phase atoms and molecules (He, Ne, N<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>O and CO<sub>2</sub>) using a variety of synchrotron-radiation based techniques are presented. The three techniques used most frequently are X-ray-emission-threshold-electron coincidence (XETECO), X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy (XPS) and they are all given a brief introduction. </p><p>The fluorescence yield (FY) from doubly excited states in helium near the N=2 threshold(s) has been investigated in weak static external magnetic and electric fields, but also in a field free environment. The FY spectra in weak static magnetic fields show the importance of including the diamagnetic interaction in the theoretical models. The presence of weak static electric fields shows that even weak fields (as low as 44 V/cm) has a great impact on the observed FY spectra. Resonant XES spectra from some of the first doubly excited states in helium has been recorded in a field free environment, and compared to theory.</p><p>The XETECO technique is presented and the first XETECO results from Ne, N<sub>2</sub>, O<sub>2</sub>, CO<sub>2</sub> and N<sub>2</sub>O are shown, together with interpretations of possible threshold dynamics. I show that XETECO can be interpreted as threshold photoelectron spectra free from post collision interaction, and can hence be compared to above threshold XPS measurements. The observed below-threshold structures in the XETECO spectra are discussed and given a tentative explanation. The results from the analysis of the N<sub>2</sub>O XETECO spectrum lead to further investigations using XPS. Results showing the vibrational parameters and vibrationally resolved cross-sections and asymmetry parameters for N<sub>2</sub>O are presented together with theoretical predictions.</p>
|
8 |
Soft X-ray Scattering Dynamics Close to Core Ionization Thresholds in Atoms and MoleculesSöderström, Johan January 2007 (has links)
In this Thesis studies of highly excited states in gas-phase atoms and molecules (He, Ne, N2, O2, N2O and CO2) using a variety of synchrotron-radiation based techniques are presented. The three techniques used most frequently are X-ray-emission-threshold-electron coincidence (XETECO), X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy (XPS) and they are all given a brief introduction. The fluorescence yield (FY) from doubly excited states in helium near the N=2 threshold(s) has been investigated in weak static external magnetic and electric fields, but also in a field free environment. The FY spectra in weak static magnetic fields show the importance of including the diamagnetic interaction in the theoretical models. The presence of weak static electric fields shows that even weak fields (as low as 44 V/cm) has a great impact on the observed FY spectra. Resonant XES spectra from some of the first doubly excited states in helium has been recorded in a field free environment, and compared to theory. The XETECO technique is presented and the first XETECO results from Ne, N2, O2, CO2 and N2O are shown, together with interpretations of possible threshold dynamics. I show that XETECO can be interpreted as threshold photoelectron spectra free from post collision interaction, and can hence be compared to above threshold XPS measurements. The observed below-threshold structures in the XETECO spectra are discussed and given a tentative explanation. The results from the analysis of the N2O XETECO spectrum lead to further investigations using XPS. Results showing the vibrational parameters and vibrationally resolved cross-sections and asymmetry parameters for N2O are presented together with theoretical predictions.
|
9 |
Quantification of trace metals in an adsorbent using proton induced x-ray emissionYadav, Nirbhay N., University of Western Sydney, College of Science, Technology and Environment, School of Science, Food and Horticulture January 2005 (has links)
High-energy ion beam based proton induced x-ray (PIXE) is an ideal analytical tool suitable for simultaneous quantification of trace elements with high accuracy. The quantification of trace elements in solids using PIXE has been well established for over two decades. The main objective of this study is to extend this capability to solids with an inhomogeneous internal structure. In this study, pure GAC and PAC samples were soaked in known concentration of arsenic (As) solution and the trace amount of As uptake was determined during these exposures using PIXE, neutron activation analysis (NAA) and atomic absorption spectroscopy (AAS). There is a good agreement between the values and adsorption mechanisms derived from the NAA and pelletised PIXE measurements and some AAS measurements. Micro-PIXE was used to understand the discrepancies in the As adsorption on the pore and flat surfaces of GAC samples. / Master of Science (Hons) (Physics)
|
10 |
The many mysteries of graphene oxide2013 December 1900 (has links)
Graphene, the first two-dimensional crystal ever found, is a material that has attracted fervent and sustained interest from condensed matter researchers from around the world.
It has a unique and unprecedented band structure in a bulk material: the bands near the Fermi level are linear, leading to massless charge carriers that propagate at the speed of light. However, graphene does not possess a band gap, and as such, it cannot be used to process information in any electronic device that uses digital logic. Graphene is oxidized when several different basic functional groups like hydroxyls, carboxyls, and epoxides bond to the hexagonal carbon basal plane to make graphene oxide (GO). The result is a nonstoichiometric and highly disordered system that, according to the results shown in this thesis, consists of zones of densely-packed functional groups interspersed between zones of relatively small functional group concentration. This has been confirmed by DFT calculations presented here, which is the first time that a successful simulation of the GO density of states
has been compared to X-ray data. Contrary to many assumptions in the literature, many of the features in the density of states of GO are due not to carbon sites bonded to functional
groups, but are due to nearby non-functionalized carbon sites.
The band gap of graphene oxide is principally controlled by oxidation level. Reduction, followed by heating, will regenerate the near-Fermi states and close the band gap significantly
as has been seen by others. However, heating non-reduced graphene oxide can also result
in a much-reduced band gap, which occurs because intercalated water can react with the heated GO sample to remove functional groups by creation and eventual expulsion of carbon dioxide. The band gap of GO is further complicated by stacking effects if it is multilayered, because residual pi-conjugated states in neighboring planes interact. The two major types of stacking in graphite are AA-stacking and AB-stacking. AA-stacking interactions cause
the pi * resonance to broaden and push states to lower energy, which means that AA-stacking determines the width of the gap in highly oxidized samples. However, direct oxidation of
graphene is not the only way that one alter the electronic structure of GO. Other results presented here also show that non-covalent functionalization of graphene oxide by amorphous solid water is a powerful, reversible way to dramatically change the GO electronic structure.
|
Page generated in 0.0725 seconds