• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 30
  • 6
  • 5
  • 4
  • 1
  • Tagged with
  • 103
  • 103
  • 36
  • 35
  • 27
  • 20
  • 20
  • 18
  • 17
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformation mechanisms in ABS polymers

Johnson, David Thomas January 2000 (has links)
No description available.
2

Fundamentals of Segregation

Mihiretu, Yetimgeta 11 1900 (has links)
A common challenge during deposition of slurries is segregation as large particles settle through the matrix of fines and water. Whether segregation occurs or not depends on the grain size distribution of the solids, the void ratio or solids content and the rheological properties of the fines-water matrix. The rheological characterization of slurry composed of different grain sizes and varying water chemistry was investigated. The vane yield stress was used to characterize different slurries composed of clay, silt and sand materials. Semi-empirical fractal theory showed good agreement with experimental data for fine slurry. Comparison of yield stress at same concentration but different composition showed a decreasing trend as the composition of either silt or sand material increases. The pore-water effect was studied for representative kaolinite slurry. The yield stress was insensitive for pH values in the acidic and neutral range, while in the basic range it showed significant response depending upon the type of the chemical used to achieve the pH: Ca(OH)2 and NaOH. A modified segmented standpipe was designed and used in a series of experiments to determine concentration profiles during the sedimentation processes. Analyses of the solid content profiles and sand content profiles in the standpipes indicated a capture of sand particles which could be correlated to the yield stress of the fines matrix. Theoretical calculations, however, showed over-prediction of the captured sand size. A correction factor of about 0.2 was applied. Flume test on a high solid content slurries showed that the dynamic segregation is governed by all the factors governing the static case. Beaching profile shapes were not a necessary indication of segregating and non-segregating type of slurries. Modified version plastic theory for flow slides was used to characterise profile shape. Computational fluid dynamics approaches based on kinetic theory and bi-viscous model analysis were implemented and showed a reasonable capability in modelling segregation when compared with experimental results. A statistical formulation for segregation index, SI, was proposed. The index accounts for variation in depth of samples. Finally recommendations for future research are proposed based on the observations and findings made from the study. / Geotechnical Engineering
3

Fundamentals of Segregation

Mihiretu, Yetimgeta Unknown Date
No description available.
4

Observation of laminar-turbulent transition of a yield stress fluid in Hagen-Poiseuille flow

Guzel, Bulent 05 1900 (has links)
The main focus of this work is to investigate experimentally the transition to turbulence of a yield stress shear thinning fluid in Hagen-Poiseuille flow. By combining direct high speed imaging of the flow structures with Laser Doppler Velocimetry (LDV), we provide a systematic description of the different flow regimes from laminar to fully turbulent. Each flow regime is characterized by measurements of the radial velocity, velocity fluctuations, and turbulence intensity profiles. In addition we estimate the autocorrelation, the probability distribution, and the structure functions in an attempt to further characterize transition. For all cases tested, our results indicate that transition occurs only when the Reynolds stresses of the flow equals or exceeds the yield stress of the fluid, i.e. the plug is broken before transition commences. Once in transition and when turbulent, the behavior of the yield stress fluid is somewhat similar to a (simpler) shear thinning fluid. We have also observed the shape of slugs during transition and find that their leading edges to be highly elongated and located off the central axis of the pipe, for the non-Newtonian fluids examined. Finally we present a new phenomenological approach for quantifying laminar-turbulent transition in pipe flow. This criterion is based on averaging a local Reynolds number to give ReG. Our localised parameter shows strong radial variations that are maximal at approximately the radial positions where puffs first appear during the first stages of turbulent transition.
5

A model for predicting the yield stress of AA6111 after multi-step heat treatments

Poole, Warren J., Raeisinia, B., Wang, X., Lloyd, D.J. January 2006 (has links)
A model has been developed to predict the yield stress of the aluminum alloy AA6111 after multi-step heat treatments which involve combinations of ambient temperature ageing and high temperature artificial ageing. The model framework follows the internal state variable framework where the two principal state variables are i) the volume fraction of clusters which form at ambient temperature and ii) the volume fraction of metastable phases which form during high temperature ageing. The evolution of the these state variables has modeled using a set of coupled differential equations. The mechanical response (the yield stress) is then formulated in terms of the state variables through an appropriate flow stress addition law. To test the model predictions a series of experiments were conducted which examined two scenarios for multi-step heat treatments. In general, good agreement was observed between the model predictions and the experimental results. However, for the case where a short thermal excursion at 250oC was applied immediately after the solution treatment, the results were not satisfactory. This can be understood in terms of the importance of the temperature dependence for the nucleation density of metastable precipitates.
6

Observation of laminar-turbulent transition of a yield stress fluid in Hagen-Poiseuille flow

Guzel, Bulent 05 1900 (has links)
The main focus of this work is to investigate experimentally the transition to turbulence of a yield stress shear thinning fluid in Hagen-Poiseuille flow. By combining direct high speed imaging of the flow structures with Laser Doppler Velocimetry (LDV), we provide a systematic description of the different flow regimes from laminar to fully turbulent. Each flow regime is characterized by measurements of the radial velocity, velocity fluctuations, and turbulence intensity profiles. In addition we estimate the autocorrelation, the probability distribution, and the structure functions in an attempt to further characterize transition. For all cases tested, our results indicate that transition occurs only when the Reynolds stresses of the flow equals or exceeds the yield stress of the fluid, i.e. the plug is broken before transition commences. Once in transition and when turbulent, the behavior of the yield stress fluid is somewhat similar to a (simpler) shear thinning fluid. We have also observed the shape of slugs during transition and find that their leading edges to be highly elongated and located off the central axis of the pipe, for the non-Newtonian fluids examined. Finally we present a new phenomenological approach for quantifying laminar-turbulent transition in pipe flow. This criterion is based on averaging a local Reynolds number to give ReG. Our localised parameter shows strong radial variations that are maximal at approximately the radial positions where puffs first appear during the first stages of turbulent transition.
7

Observation of laminar-turbulent transition of a yield stress fluid in Hagen-Poiseuille flow

Guzel, Bulent 05 1900 (has links)
The main focus of this work is to investigate experimentally the transition to turbulence of a yield stress shear thinning fluid in Hagen-Poiseuille flow. By combining direct high speed imaging of the flow structures with Laser Doppler Velocimetry (LDV), we provide a systematic description of the different flow regimes from laminar to fully turbulent. Each flow regime is characterized by measurements of the radial velocity, velocity fluctuations, and turbulence intensity profiles. In addition we estimate the autocorrelation, the probability distribution, and the structure functions in an attempt to further characterize transition. For all cases tested, our results indicate that transition occurs only when the Reynolds stresses of the flow equals or exceeds the yield stress of the fluid, i.e. the plug is broken before transition commences. Once in transition and when turbulent, the behavior of the yield stress fluid is somewhat similar to a (simpler) shear thinning fluid. We have also observed the shape of slugs during transition and find that their leading edges to be highly elongated and located off the central axis of the pipe, for the non-Newtonian fluids examined. Finally we present a new phenomenological approach for quantifying laminar-turbulent transition in pipe flow. This criterion is based on averaging a local Reynolds number to give ReG. Our localised parameter shows strong radial variations that are maximal at approximately the radial positions where puffs first appear during the first stages of turbulent transition. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
8

The Design and Flow Dynamics of Non-Brownian Suspensions

Rashedi, Ahmadreza January 2020 (has links)
No description available.
9

Effect of molecular mass, concentration and temperature on the rheological properties of non-newtonian aqueous polymeric solutions

Bhatia, Rupesh 26 September 2011 (has links)
No description available.
10

Rheology of waxy crude oils in relation to restart of gelled pipelines

Fakroun, A., Benkreira, Hadj 18 September 2019 (has links)
Yes / Waxy crude oils are pumped hot but upon power cut, pumping stops, the oil cools leading below the wax appearance temperature to precipitation of the wax and the formation of a gel throughout the pipe. In such a situation, what is the minimum pressure required to restart flow, not to merely deform the gel or break it? This paper provides a solution to this problem using microscopic observations under controlled cooling conditions and rheological data conducted in constant stress mode under controlled temperature and cooling conditions and restart experiments in laboratory pipelines replicating the rheometric conditions and deviations from them to inform large diameter operation in the field. Three important findings derive from the experimental data collected: (i) A fragmentation stress , rather than the static stress that precedes it, is found to be the more accurate predictor of flow re-start pressures; (ii) Waxy crude oils gels exhibit true yield stress and yielding process but also show flow on application of the slightest stress below yielding; (iii) This flow, in the elastic region, is jagged rather than continuous suggesting a consolidation process of the crystals and their agglomerates forming the gel. In the broader context of the existence of a yield stress, the data presented here show that there is such a thing as a yield stress and the concepts of a yield stress and that everything flows are not mutually exclusive.

Page generated in 0.0515 seconds