Spelling suggestions: "subject:"yukon."" "subject:"aukon.""
121 |
Structural analysis of a Mesozoic sequence in the Kluane Ranges, Yukon Territory evidence for terrane accretion and offset /Brailey, David Elton. January 1986 (has links)
Thesis (M.A.)--University of Wisconsin--Madison, 1986. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 134-140).
|
122 |
Women of the 1898 Alaska-Klondike Gold Rush /Bornstein, Sara. January 2009 (has links)
Thesis (B.A.)--Haverford College, Dept. of History, 2009. / Includes bibliographical references. Also available in electronic format via Internet.
|
123 |
Inherent aboriginal rights in theory and practice the Council for Yukon Indians umbrella final agreement.McCormick, Floyd William, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Alberta, 1997. / Includes bibliographical references.
|
124 |
Subarctic nitrogen fixation in monoculture alfalfa and mixed alfalfa/grass forage swardsBall, Matthew Thomas Auric 11 1900 (has links)
Forage growth in the subarctic is sub-optimal due to low soil nutrient levels. Forage crops in the Yukon Territory consistently require nitrogen (N) and phosphorus fertilization to meet plant requirements. Fertilization is expensive due to transportation costs and potentially
harmful to the environment so alternative, more sustainable, sources of nutrients are being sought. Alfalfa is an alternative, but there is limited knowledge in the Yukon of the benefits and management of this crop as a replacement for fertilizer N. Experiments were carried out in south central Yukon during the 2005 and 2006 field seasons to examine the potential of co-inoculation
of alfalfa with N-fixing Ensifer meliloti and phosphate-solubilizing Penicillium bilaii to increase the dry matter yield and N fixation of monoculture alfalfa (Medicago sativa) cv Peace and binary mixed alfalfa with smooth bromegrass (Bromus inermis) cv Carlton or timothy (Phleum pratense) cv Climax forage swards. Interactions between alfalfa inoculation and N fertilization and late season harvest treatments were assessed. The TagTeam® inoculant from Philom Bios was used as the rhizobium source which contains both Ensifer meliloti isolate NRG-34 and Penicillium bilaii isolate PB-50. Nitrogen fixation was determined using the total plant N difference method.
Alfalfa growth and nodulation was successful in the trials. Inoculation had a positive impact on N fixation, whereas urea fertilizer at 25 kg N/ha had a negative impact in most cases.
In the mixed alfalfa and smooth bromegrass stand there was a positive contribution from the alfalfa in both the establishment and second year with N fixation rates of up to 14 kg/ha. In the mixed timothy and alfalfa stand the N fixation reached 35 kg/ha in the establishment year and 102 kg/ha in the second year.
In the establishment year the dry matter yield and N fixation of the TagTeam® inoculated, monoculture alfalfa plots were 3.1 t/ha and 77 kg N/ha. In the second year, the unharvested inoculated alfalfa treatment yielded 3.4 t/ha with N fixation of 66 kg/ha compared to the late harvest treatment which yielded only 1.5 t/ha and an N fixation rate of 20 kg/ha. The effects of the late season harvest are startling and reflect the importance of removing grazing animals
during the fall to allow plant energy reserves to accumulate in the roots.
Fertilizer N replacement is possible with the seeding of alfalfa into existing hay stands or in monoculture. / Land and Food Systems, Faculty of / Graduate
|
125 |
Conflict in the British Columbia - Cooperative Commonwealth Federation and the 'Connell Affair'Wickerson, Gordon Stanley January 1973 (has links)
The B.C.-CCF was formed in late 1932 shortly after the formation
of the national CCF party. In November of the following year the B.C.
party ran in its first election and secured sufficient support to become
the official opposition. The party's executive, spurred by the prospects
and hopes of its eventual election as government and in response to its
need for a moderate image, selected a retired Anglican minister as House
leader.
The choice of Robert Connell as House leader was not, however, unanimous.
Die hard socialists with different interpretations of society and
the role the party should play in achieving social change, fought Connell*s
leadership and received sufficient support to mount an intensive intraparty
campaign of harassment and criticism.
Connell's critics were successful, as a result, in making his leadership
intolerable and the subsequent weight of circumstances led him to
imprudently reject party convention decisions because they favoured his
left wing opponents. This action both isolated him from the rank and file
and gave his critics, then in control of the party's executive, an excuse
to expel him for his treachery and apostasy. His leadership ended less than
three years after it had begun and he became one of three B.C. party leaders
dethroned during this period by his party. / Arts, Faculty of / Political Science, Department of / Graduate
|
126 |
Thermochronology of Early Jurassic Exhumation of the Yukon-Tanana Terrane, West-central YukonKnight, Eleanor January 2012 (has links)
This study utilised U-Pb geochronology, and 40Ar/39Ar and (U-Th)/He thermochro-nology to delineate arc magmatism, metamorphism, and exhumation of the pericratonic Yukon-Tanana terrane in the McQuesten map area of west-central Yukon, Canada. SHRIMP U-Pb ages delineate Mid to Late Paleozoic arc magmatism and fit key units into the regional lithotectonic framework of the terrane. The juxtaposition of unmetamorphosed and predomi-nantly undeformed Devono-Mississippian rocks in the northwest of the study area with polydeformed and up to amphibolite facies metamorphosed rocks in the southwest suggests a crustal-scale discontinuity, the Willow Lake fault, bounds the two domains. The asymmetric distribution of 40Ar/39Ar ages across the fault suggest it is extensional, and was active in the Early Jurassic. Zircon (U-Th)/He ages delineate erosion of rocks in the northwest through the upper crust during the Late Triassic and Late Jurassic to Early Cretaceous followed by Mid-dle Cretaceous erosion of the southwestern domain and possibly fault reactivation.
|
127 |
Towards a TTOP-Model of Permafrost Distribution for Three Areas in Yukon and Northern British ColumbiaBevington, Alexandre R. January 2015 (has links)
Air, ground surface and top of permafrost temperatures (TTOP) were measured at 58 sites in three areas of Yukon and northern British Columbia in order to: (1) explore relationships between climate-permafrost transfer functions and environmental variables, (2) assess and validate the TTOP-model, and (3) attempt the first implementation of the TTOP-model (Smith and Riseborough, 1996, 2002) for these regions with complex terrain. The strongest factors controlling climate-permafrost transfer functions are elevation and land cover, though slope, aspect, topographic position and surficial geology were also investigated. In 1000 iterations of the model using random equally possible scenarios, 64% of the TTOP-model predictions were within ±1°C of measured values, a result that is 6% better than applying a simple 3°C “total offset” to the mean annual air temperature. A sensitivity analysis confirmed that the TTOP-model is most sensitive to changes in snow, thermal conductivity of the ground and summer air temperatures. A land cover driven TTOP-model was then developed and implemented. The model correctly predicts high likelihoods of permafrost (> 0.8) for sites with permafrost present and low likelihoods (< 0.4) for non-permafrost sites.
|
128 |
Quaternary geology in the Southern Ogilivie Ranges : Yukon Territory and an investigation of morphological, periglacial, pedological and botanical criteria for possible use in the chronology of morainal sequences.Ricker, Karl Edwin January 1968 (has links)
Five periods of ice advance in the North Klondike-upper Blackstone basins of the Ogilvie Mountains are recognized by the downvalley sequence of progressively older moraines. The youngest occurred during the last millennium and is represented by glacierets and fresh moraines. The other advances are of the Pleistocene Epoch; from youngest to oldest they are: Age I (valley glacier stage), Age II (transection glacier), Age IIA (transection glacier with piedmont) and Age III (mountain ice cap). Evidence for Age III is limited to the north slope of the ranges. Age IIA was recognized only on the north slope and may represent a slightly older pulse of the Age II. This chronosequence is tentatively correlated with those elsewhere in the northern Cordillera.
Within the region an array of surficial elements indicates that a continuous and discontinuous mosaic of processes have operated interdependently during the Quaternary. A product of these processes is mapped under one of eight facies - attention being directed to the varieties of features associated with the glacial and periglacial cycles. Of the latter, active, inactive and degradational forms exist. Strong correlations between the distribution of some types of surficial features and the underlying bedrock geology are recognized.
No changes in morphology, permafrost distribution, pebble weathering, pedogenesis and floral succession could be related to the ages of the Pleistocene moraines. The influence of permafrost on all ages of moraines, the variability in their environment of deposition, and an edaphic and climatic discontinuity produce greater differences than does the age factor. In the northern half of the study area, permafrost and associated phenomena were observed to greatly retard chemical alteration; on the other hand, they permit the development of only a vegetational and pedological "polyclimax", rather than a single mesic climax, in a time span of less than 11,000-15,000 years. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
|
129 |
Geologic setting and petrology of the Proterozoic Ogilvie Mountains breccia of the Coal Creek inlier, southern Ogilvie Mountains, Yukon TerritoryLane, Robert Andrew January 1990 (has links)
Ogilvie Mountains breccia (OMB) is in Early (?) to Late Proterozoic rocks of the Coal Creek Inlier, southern Ogilvie Mountains, Yukon Territory. Host rocks are the Wernecke Supergroup (Fairchild Lake, Quartet and Gillespie Lake groups) and lower Fifteenmile group. Distribution and cross-cutting relationships of the breccia were delineated by regional mapping. OMB was classified by clast type and matrix composition.
Ogilvie Mountains breccia crops out discontinuously along two east-trending belts called the Northern Breccia Belt (NBB) and the Southern Breccia Belt (SBB). The NBB extends across approximately 40 km of the map area, and the SBB is about 15 km long. Individual bodies of OMB vary from dyke- and sill-like to pod-like. The breccia belts each coincide with a regional structure. The NBB coincides with a north side down reverse fault—an inferred ruptured anticline—called the Monster fault. The SBB coincides with a north side down fault called the Fifteenmile fault. These faults, at least in part, guided ascending breccia.
The age of OMB is constrained by field relationships and galena lead isotope data. It is younger than the Gillespie Lake Group, and is at least as old as the lower Fifteenmile group because it intrudes both of these units. A galena lead isotope model age for the Hart River stratiform massive sulphide deposit that is in Gillespie Lake Group rocks is 1.45 Ga. Galena from veinlets cutting a dyke that cuts OMB in lower Fifteenmile group rocks is 0.90 Ga in age. Therefore the age of OMB formation is between 1.45 and 0.90 Ga.
Ogilvie Mountains breccia (OMB) has been classified into monolithic (oligomictic) and heterolithic (polymictic) lithologies. These have been further divided by major matrix components—end members are carbonate-rich, hematite-rich and chlorite-rich. Monolithic breccias with carbonate matrices dominate the NBB. Heterolithic breccias are abundant locally in the NBB, but are prevalent in the SBB. Fragments were derived mainly from the Wernecke Supergroup. In the SBB fragments from the lower Fifteenmile group are present. Uncommon mafic igneous fragments were from local dykes. OMB are generally fragment dominated. Recognized fragments are up to several 10s of metres across and grade into matrix sized grains. Hydrothermal alteration has locally overprinted OMB and introduced silica, hematite and sulphide minerals. This mineralization has received limited attention from the mineral exploration industry.
Rare earth element chemistry reflects a lack of mantle or deep-seated igneous process in the formation of OMB. However, this may be only an apparent lack because flooding by a large volume of sedimentary material could obscure a REE pattern indicative of another source.
The genesis of OMB is significantly similar to modern mud diapirs. It is proposed that OMB originated from pressurized, underconsolidated fine grained limey sediments (Fairchild Lake Group). These were trapped below and loaded by turbidites (Quartet Group) and younger units. Tectonics and the initiation of major faults apparently triggered movement of the pressurized fluid-rich medium. The resulting bodies of breccia are sill-like and diapir-like sedimentary intrusions. Fluid-rich phases may have caused hydrofracturing (brittle failure) of the surrounding rocks (especially in the hanging wall). Breccia intrusion would have increased the width of the passage way while encorporating more fragments. Iron- and oxygen-rich hydrothermal fluids apparently were associated with the diapirism. Presumably these fluids are responsible for the high contents of hematite and iron carbonate in fragments, and especially, in the matrix of the breccias. Exhalation of these fluids may have formed the sedimentary iron formations that are spatially associated with the breccias. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
|
130 |
Interpretation of a seismic refraction profile from the Richardson Mountains, Yukon territoryO'Brien, Simon January 1990 (has links)
In March of 1987, the Geologic Survey of Canada conducted a major seismic refraction experiment in the Mackenzie Delta-Southern Beaufort Sea-Northern Yukon area. This study involves the analysis of a portion of the resulting data set. A 2D velocity profile through the Richardson Mountains of the northern Yukon has been constructed using raytracing to model the travel-times and amplitudes. The line is approximately 320 km long, running from a shotpointon the Eagle Plains in the south to one 50 km offshore in Mackenzie Bay to the north, with an average receiver spacing of 3.5 km. An additional shotpoint is located at Shingle Point, on the shore of Mackenzie Bay.
A series of four sedimentary basins separated by major structural highs produces a complex
basement structure. Two distinct upper crustal layers were modelled, a 5.95 km/s layer overlying a 6.3 km/s layer, as well as a lower crustal layer with a velocity of 7.25 km/s. Crustal velocity gradients are low (≤ 0.005 s⁻¹). The 6.3 km/s layer pinches out beneath the Beaufort-Mackenzie Basin in the north, accompanied by a thinning of the lower crust from a thickness of 20 km in the south to less than 10 km beneath MB. This results in the crust as a whole thinning from a thickness of 50 km under the Richardson Mountains to only 40 km under the Beaufort-Mackenzie Basin. The velocity of the upper mantle is 7.95 km/s.
The modelling of shear wave arrivals indicate Poisson's ratios of 0.23 ±0.02 in the upper crust and 0.25 + 0.02 in the lower crust. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
|
Page generated in 0.0223 seconds