• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 109
  • 44
  • 39
  • 10
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 462
  • 136
  • 55
  • 53
  • 53
  • 52
  • 50
  • 50
  • 48
  • 48
  • 44
  • 41
  • 40
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Dental zirconia: in-vitro comparison and outcome of methods for veneering, glazing, and chipping repairs

Kumchai, Hattanas 28 September 2016 (has links)
OBJECTIVE: The purpose of this study is to evaluate the experimental properties of zirconia-based ceramics. METHODS: Zirconia bars were veneered to 2mm total thickness. Veneering-method groups included: 1.Hand-layered feldsparthic porcelain (VM=VitaVM9,Vident) and fluorapatite glass-ceramic (CR=IPSe.maxCeram,IvoclarVivadent); 2.Pressed feldspathic porcelain (PM=VitaPM9,Vident) and fluorapatite glass-ceramic (ZP=IPSe.maxZirPress,IvoclarVivadent); 3.CAD/CAM milled feldspathic ceramic (TF=VitablocsTriluxeForte,Vident) and lithium-disilicate glass-ceramic (CAD=IPSe.maxCAD,IvoclarVivadent). CAD/CAM veneers were either cemented with resin cements (P=Panavia21,KurarayDental), (R=RelyXUltimate,3M ESPE), (M=MultilinkAutomix,IvoclarVivadent) or fused with fusion glass-ceramic (C=CrystalConnect,IvoclarVivadent). A Three-point-bending test was performed. For group VM,PM,TF-M,TF-C,CAD-M,CAD-C, ten more bars were prepared and aged with cyclic loading and thermocycling before testing. Zirconia bars (PrettauZirconia,Zirkonzahn;inCorisTZI,Sirona;ZirluxFC,PentronCeramics) specimens were prepared and polished. The specimens were divided into 3 groups: control, self-glaze fired, and glazed groups. A Three-point bending test was performed. Veneered zirconia crowns were made. Feldspathic porcelain was applied to zirconia coping. Bevel cut on porcelain was made to simulate porcelain chipping. The crowns were then divided into 4 different groups according to repair materials including: 1.Conventional-resin composite (TetricEvoCeram,IvoclarVivadent) 2.Flowable-resin composite (G-aenialUniversalFlo,GCamerica) 3.Cemented CAD/CAM milled feldspathic ceramic (VitaTriluxForte,Vident) 4.Cemented CAD/CAM milled lithium-disilicate glass-ceramic (IPSe.maxCAD,IvoclarVivadent). Each crown underwent thermocycling. The test was performed by loading force on the center of repaired part to record load-to-failure. RESULTS: There were significant differences in the failure loads of non-aged bilayered veneer-zirconia bars. Aging experiment revealed a significant difference in failure load between non-aged and aged bars in groups VM and PM, but not in the groups with CAD/CAM milled veneers. There was significant influence of surface treatments on flexural strength of zirconia specimens. Post-hoc test showed that glazed group had significant lower flexural strength than other groups. Crowns repaired with CAD/CAM ceramics showed significant higher failure load than resin composite. Repairing with lithium-disilicate glass ceramic yielded the highest load-to-failure of the specimens. CONCLUSIONS: - Veneer materials, veneering methods, and cement materials have a significant effect on the failure load of bilayered veneer- zirconia. CAD/CAM veneer-zirconia is not susceptible to aging performed in this study. - Glazing decreased the flexural strength of high translucent zirconia. - Veneered zirconia crowns repaired with CAD/CAM ceramic materials have significantly higher load-to-failure than veneered crowns repaired with resin composite. / 2018-09-28T00:00:00Z
62

Materiais com gradiente funcional (MGF) a base de aço inox 316 e zircônia / Functionally graded materials (FGM) based on 316 stainless steel and zirconia

Grajales Agudelo, Leonardo 19 March 2014 (has links)
Materiais com gradiente funcional (MGF), a base de aço inoxidável e cerâmica têm despertado interesse em diversas áreas tecnológicas: estrutural, térmica, elétrica, biomédica e militar, e têm inspirado pesquisadores a combinar propriedades e características que não estão presentes em peças convencionais. Têm sido também considerados como uma alternativa na preparação de partes de motores de alta eficiência, ferramentas de corte e revestimentos estruturais para reatores químicos. A incorporação de metal e cerâmica em uma estrutura graduada permite a integração de muitas propriedades desejáveis que combinam ambas vantagens do metal e a cerâmica. Os componentes cerâmicos são capazes de suportar altas temperaturas e possuem alta resistência à corrosão, enquanto os componentes metálicos apresentam uma alta resistência à tração e alta ductilidade, e portanto são menos susceptíveis a fratura catastrófica. Neste trabalho, compósitos com níveis variáveis de aço inoxidável 316L e zircônia estabilizada com ítria, obtidos pelo processo de moagem de alta energia, foram preparados e caracterizados para determinar o comportamento térmico de cada composição, com o objetivo de planejar a sinterização dos MGFs com gradação de composição química. Difração de raios-x (DRX), análises de dilatometria e calorimetria exploratória diferencial (DSC) foram realizadas para os materiais compósitos com proporções diferentes de aço inoxidável e de zircônia, com o objetivo de analisar a influência da composição, como da taxa de aquecimento no comportamento dos compósitos selecionados durante a sinterização. Além disso, foram construídos por metalurgia do pó e caracterizados três peças de MGF. As peças de MGFs foram caracterizadas no microscópio óptico e microscópio eletrônico de varredura (MEV). Microanálise química foi feito pela técnica de espectroscopia de energia dispersiva (EDS) para o MGF1 e EDS - Line scan analysis das peças MGF2 e MGF3. Finalmente, as fases presentes nas peças foram medidas pela técnica de penetração Vickers. Os resultados dos ensaios dilatométricos para compósitos com teores de zircônia superiores a 50% e com taxas de aquecimento de 5ºC/min e 10ºC/min até 1200ºC, apresentaram uma contração linear maior em torno a 900ºC, e para composições com taxa de aquecimento de 15ºC/min em torno a 1000ºC, indicando que o processo de densificação se inicio a temperaturas inferiores que as outras composições observadas nas curvas dilatométricas para essas mesmas taxas de aquecimento. Os DSC dos compósitos apresentaram uma mudança correspondente à precipitação dos carbetos de cromo próprios do aço inox austenítico. A adição de zircônia ao aço inoxidável inibiu a precipitação dos carbetos, indicado pelo aparecimento de um pico nas amostras composta somente pelo aço inoxidável. / Functionally graded materials (FGM) based on stainless steel and ceramics has aroused interest in many technological areas: structural, thermal, electrical, biomedical and military, and has inspired researchers to combine properties and features which are not present in conventional samples, and is considered to be an alternative in the preparation of high efficient motors parts, cutting tools and structural coatings for chemical reactors. The incorporation of metal and ceramic in a graduated structure allows the integration of many desirable properties that combine advantages of metallic and ceramic materials. Ceramic components are capable of withstanding high temperatures and have high corrosion resistance, while the metallic components provide a higher mechanical resistance, in particular ultimate tensile strength and ductility, and therefore less susceptible to catastrophic fracture. In this work, composites with variable levels of 316L Stainless Steel and Yttria Stabilized Zirconia, obtained by high-energy milling process, were prepared and characterized, in order to determine the thermal behavior of each composition, with the aim of planning the sintering of a FGM with gradation of chemical composition. X-rays diffractometry (XRD), dilatometric analyses and differential scanning calorimetry (DSC) were performed for composites materials with distinct proportions of Stainless Steel and Zirconia, with the objective of analyzing the influence of the composition, as the heating rate the behavior of Stainless Steel/Zirconia layers during sintering. Additionally, were built by powder metallurgy and characterized three samples of FGM. The samples of MGFs were characterized in the optical microscope and scanning electron microscope (SEM). Chemical microanalysis was done by the technique of energy dispersive spectroscopy (EDS) of FGM1 and EDS-Line Scan Analysis of samples and FGM2 and FGM3. Finally, the phases present in the samples were measured by Vickers penetration technique. The results of dilatometric tests for composites with levels higher than zirconia to 50% and heating rates of 5°C/min and 10ºC/min up to 1200°C showed a greater linear shrinkage around 900ºC, and compositions at a heating rate of 15°C/min to about 1000°C, indicating that the densification process is starting at temperatures below that observed in other compositions dilatometric curves for these same heating rates. The DSC of the composites showed a change corresponding to the chrome carbides precipitation own austenitic stainless steel. The zirconia addition to stainless steel inhibited the carbides precipitation, indicated by the appearance of a peak in the samples composed only of stainless steel.
63

Recuperação da fase tetragonal em cerâmicas dentárias à base de ZrO2(Y2O3) submetidas à transformação martensítica precoce / Recovery of tetragonal phase in ZrO2 (Y2O3) dental ceramic submitted to forced martensitic transformation

Bruno Galvão Simba 19 September 2011 (has links)
Cerâmicas à base de zircônia tetragonal estabilizada com ítria (ZrO2(3%Y2O3)) possuem excelentes propriedades mecânicas, devido a uma peculiar transformação de fases que ocorre nos grãos desta cerâmica durante o crescimento de uma trinca. O crescimento da trinca gera tensões compressivas sobre os grãos tetragonais metaestáveis, os quais se transformam em monoclínicos, promovendo uma expansão volumétrica de 3 a 5%, a qual impede que a trinca continue crescendo nas condições de carregamento mecânicos inicialmente utilizados, o que produz aumento da resistência à fratura, e tenacidade deste material. Neste trabalho são apresentados os resultados do estudo da recuperação da fase tetragonal pela utilização de tratamentos térmicos, em zircônia envelhecida por desgaste, durante a preparação de próteses dentárias. Blocos cerâmicos pré-sinterizados à base de ZrO2(3%Y2O3) foram sinterizados em três condições distintas, quais sejam, 1450°C - 0h, 1530°C - 2h e 1600°C - 4h. Cada lote de amostras sinterizado foi submetido análise de densidade relativa, difração de raios X (DRX) e microscopia eletrônica de varredura (MEV). Parte das cerâmicas sinterizada foi fraturada, e a superfície de fratura foi re-examinada por DRX e MEV. Outra parte foi fragmentada visando a transformação martensítica, que gera a fase monoclínica no material, e em seguida caracterizada por DRX. Os resultados da densificação e análise microestrutural indicaram densidade relativa de 94,2%, 99,6% e 99,75%, tamanho médio de grão de 0,28?m, 0,49m e 1,31m, para amostras sinterizadas a 1450°C - 0h, 1530°C - 2h e 1600°C - 4h respectivamente. Após fragmentação, os teores de fase monoclínica medidos foram da ordem de 58%, 43% e 4,5% que correspondem a aproximadamente 65% vol, 50% vol e 6% vol. Tratamentos térmicos realizados a 950°C, 1100°C e 1200°C foram necessárias para recuperação de 100% de fase tetragonal, em amostras sinterizadas a 1450°C - 0h, 1530°C - 2h e 1600°C - 4h, respectivamente. / Tetragonal zirconia-based ceramic stabilized with (ZrO2(3%Y2O3)) have excellent mechanical properties due to a peculiar phase transformation that occurs in this ceramic grains during the growth of a crack. The crack growth generates compressive stresses on the metastable tetragonal grains, which are transformed into monoclinic, promoting a volumetric expansion of 3 to 5% which prevents the crack continues to grow under conditions of mechanical loading initially used, which produces the increased fracture strength and toughness of this material. This paper presents results of the recovery of the tetragonal phase by the use of thermal treatments in zirconia aged for wear during the preparation of dental prostheses. ZrO2(3%Y2O3) pre-sintered ceramic blocks were sintered in three different conditions: 1450°C-0h, 1530°C-2h and 1600°C-4h. Sintered samples were characterized by relative density, X-Ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Part of the sintered samples was fractured and the fracture surface was re-examined by XRD and SEM. Another part was milled aiming generates a martensitic transformation (monoclinic phase), and characterized by XRD. The results of densification and SEM analysis indicates relative density of 94.2%, 99.6% and 99.75%, average grain size of 0.28?m, 0.48m and 1.31m, for samples sintered at 1450°C-0h, 1530°C-2h and 1600°C-4h respectively. After milling, the monoclinic phase content was 58%, 43% e 4,5% corresponding to 65% vol, 50% vol e 6% vol. For samples sintered at 1450°C-0h, 1530°C-2h e 1600°C-4h, heat treatments of 950°C, 1100°C and 1200°C were performed respectively, for recuperation of 100% of tetragonal phase.
64

Caracterização estrutural e eletrônica da zircônia pura e com defeitos e impurezas / Structural and electronic characterization of zirconia, pristine and with impurities

Michel Lacerda Marcondes dos Santos 09 December 2011 (has links)
Neste trabalho estudamos as propriedades eletrônicas e as estabilidades estruturais do cristal de ZrO2 e dos defeitos de vacância de oxigênio e impureza substitucional de cério. As investigações foram efetuadas através de simulações computacionais baseadas em métodos de primeiros princípios dentro do formalismo da teoria do funcional da densidade e utilizando o método APW + lo (Aumengted Plane Waves plus local orbitals), implementado no código computacional WIEN2k, dentro do esquema de supercélula, com relaxações atômicas tratadas de modo apropriado. A zircônia apresenta 3 fases estruturais, dependendo da temperatura. Sua fase mais estável é a monoclínica e, a altas temperaturas, ela apresenta as fases tetragonal e cúbica, sendo estas duas últimas as mais importantes para aplicações tecnológicas. Ela pode ser estabilizada em uma condição metaestável em uma estrutura quase cúbica quando crescida na forma de pós nanocristalinos, com tamanhos menores que um certo tamanho crítico. Outra maneira de se estabilizar as estruturas cúbica e tetragonal, a temperatura ambiente, é através da adição de dopantes, entre eles o cério. Nesses casos, estão sempre presentes vacâncias de oxigênio. Neste trabalho, para o cristal puro de ZrO2, foram calculadas as propriedades das estruturas cristalinas cúbica e tetragonal, constatando-se que a estrutura quase cúbica, proposta em várias investigações relatadas na literatura, pode ser interpretada como uma estrutura tetragonal de corpo centrado, com pequenos deslocamentos dos átomos de oxigênio na direção k . Destes resultados, propomos que nas análises dos dados experimentais obtidos por difração de raios-X e EXAFS (Extended X-ray Absorption Fine Structure) sejam utilizadas simulações onde a estrutura tetragonal de corpo centrado seja considerada como uma possível estrutura para o cristal. Dos estudos da vacância de oxigênio, obtivemos que sua presença quebra a simetria local do sistema e faz com que existam três diferentes distâncias entre um átomo de Zr e os átomos primeiros vizinhos de oxigênio, podendo, também, explicar resultados experimentais de difração de raios-X e EXAFS. Para o centro de impureza substitucional de Ce no sítio do átomo de Zr, nossos resultados apresentam uma possível explicação de porque as impurezas de Ce, em diferentes concentrações, estabilizam o ZrO2 nas estruturas tetragonal e cúbica. / In this investigation we studied the electronic properties and the structural stabilities of zirconia (ZrO2), as well as oxygen vacancy and Ce substitutional impurity. The investigations were carried by computational simulations using ab initio methods, based on the density functional theory and the APW + lo (Aumengted Plane Waves plus local orbitals) method, as implemented in the WIEN2k code, considering the supercell approach and atomic relaxations. Concerning the ZrO2 bulk, the tetragonal (quasi-cubic) phase is not thermodynamically stable at room temperature, but it can be retained in a metastable condition in nanocrystalline powders with crystallite sizes smaller than a certain critical size, or throught addition of dopants, for example cerium. In this cases, oxygen vacancies are always present. In this work we have obtained the properties of the cubic and tetragonal phases of ZrO2. From the results, we propose that the quasi-cubic structure presented in many articles can be understood as a body centered tetragonal structure, with small oxygen atoms displacement perpendicular to the k direction. Those results suggest that the analysis of the X-ray and EXAFS (Extended X-ray Absorption Fine Structure) data should include in the crystallographic model the body-center tetragonal structure. The results of the structural and electronic properties of the oxygen vacancy suggest that its presence could explain the different models of the Zr first neighbor oxygen shell. For the Ce substitutional impurity, our results present a possible explanation why these impurities, in several concentrations, are able to stabilize the ZrO2 in the tetragonal and cubic phases.
65

Zirconia as a biomaterial for odontological applications : effects of composition and manufacturing processes on fracture resistance

Sundh, Anders January 2010 (has links)
Background: Ceramics have long been amongst the most biocompatible materials known but their mechanical properties have limited their use. During the past few decades zirconia has aroused particular interest as a biomaterial because of its greater flexural strength, fracture resistance and toughness compared to other bioceramics. Technological inventions and developments have made the processing of zirconia-based ceramics possible and thus also the successful processing of dental restorations constructed from this type of material. The properties of zirconia-based ceramics can, however, be affected by, for example, shape, composition, manufacturing processes and subsequent handling. It was, therefore, of particular interest to study in what way recently introduced zirconia-based ceramics intended for odontological applications could be affected by the shape, manufacturing process, composition, grinding and veneering. Methods: By means of newly invented and developed CAM-Software systems with improvements in grinding technology and strategy and hardware technology, cores for single crowns, fixed partial denture (FPD) frameworks and implant-supported abutments and copies were manufactured from a hot isostatic-pressed (HIPed) yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. In addition, zirconia-based ceramics intended for odontological applications but made from other compositions and/or using different manufacturing techniques were studied. The effects were determined of shape, composition, manufacturing process, heat treatment and veneering of the cores/frameworks on the fracture or bending resistance of various types of ceramic single crowns, FPD frameworks and implant-supported abutments and copies. Results: Different thicknesses in different parts of HIPed Y-TZP cores improved the fracture resistance compared with cores of a uniform thickness resulting in a thicker veneer layer. Machining, heat treatment and veneering affected the fracture resistance of the zirconia-based ceramics studied. In addition, the quality of sintering and composition and type of veneering porcelain used influenced the fracture resistance of zirconia-based ceramics. Conclusion: The results obtained indicate that zirconia-based ceramics have the potential for use as a material in odontological applications. The mechanical properties of zirconia ceramics are, however, affected by, among other things, the shape, composition, manufacturing processes and subsequent handling of the material. These findings have to be taken in consideration in the production processes of zirconia-based ceramic restorations. To further improve their function more studies are needed to elucidate the effects of various manufacturing and handling techniques on the properties of zirconia-based ceramics.
66

Chemistry of Zirconia and Its Bioanalytical Applications

Anazia, Oge 01 December 2009 (has links)
This research studies the chemical nature of zirconia and the complex surface chemistry of zirconia in order to better comprehend its behavior under chromatographic conditions. This research shows how the physical and chemical properties of zirconia depend strongly on the thermal treatment during synthesis. The morphology of the samples was also studied. The absorption capability of Adenosine Triphosphate (ATP) on zirconia was also monitored and spectrally characterized. The results of this research showed how the properties of zirconia vary with thermal treatment. It was observed that the zirconia prepared at a higher temperature had lower surface area, lower pore size and pore volume as compared to the zirconia prepared at a lower temperature. The morphology studies showed the porosity of the zirconia. The results from the absorption experiments showed that zirconia prepared at a higher temperature absorbed more ATP than the zirconia prepared at a lower temperature. Significant changes were also observed on the pellets of zirconia pre and post absorption experiments. I hope that this research sheds more light on the complex properties of zirconia’s surface chemistry and the results of this study could better help in the application and use of zirconia in chromatography to separate proteins.
67

I. On the processing, microstructure and optical properties of Cr-doped willemite-bearing glaze on polycrystalline alumina substrate II. Optical properties, microstructure and phase transformation of ZrO2 nanocondensates via pulse laser ablation condensation in water

Wu, Chao-Hsien 15 July 2010 (has links)
­^¤åºK­n¬°none
68

The Preparation and Phase Transformation of Nanometer Zirconia Thin Film by Ion Beam Sputtering Method

Yeh, Sung-wei 30 June 2006 (has links)
Nanocrystalline £\-Zr condensates deposited by ion beam sputtering on the NaCl (100) surfaces and then annealed at 100 ¢J to 750 ¢J in air. The phases present were identified by transmission electron microscopy to be nanometer-size £\-Zr+ZrO¡B£\-Zr+ZrO+c-ZrO2¡Bc-ZrO2¡Bc-+t-ZrO2¡Bt-ZrO2¡Band t-+m-ZrO2 phase assemblages with increasing annealing temperature. The zirconia showed strong {100} preferred orientation due to parallel epitaxy with NaCl (100) when annealed between 150 ¢J and 500 ¢J in air. The c- and t-zirconia condensates also showed (111)-specific coalescence among themselves. The c- and/or t-ZrO2 formation can be accounted for by the small grain size, the presence of low-valence Zr cation and the lateral constraint of the neighboring grains. (Part 1) Nanocrystalline £\-Zr condensates were deposited on the NaCl (100) plane at 25 to 450 ¢J by radio frequency ion beam sputtering from a pure 99.9¢H Zr disk. The nano condensates were identified by transmission electron microscopy to be quasiamorphous, £\-Zr, £\-Zr+ZrO and £\-Zr+ZrO+c-ZrO2 phase assemblages with increasing substrate temperature. At 400 ¢J and under 1-20 sccm oxygen, c- and t-ZrO2 nanocondensates were assembled on NaCl (100) as monolayer nanocrystalline material and showed strong preferred orientation. The c- and/or t-ZrO2 were retained by small grain size, low-valence Zr cation and 2-D matrix constraint of the film. (Part 2) Nanosized c- and t-ZrO2 were formed as monolayer nanocrystalline film on NaCl (100) plane by radio frequency ion beam sputtering. The microstructure and the epitaxy relationship with the NaCl (100) plane were studied by a high resolution transmission electron microscope. The epitaxy orientation was found to be [001]Z//[001]N, [100]Z//[1 0]N (group A), and [011]Z//[001]N, [100]Z//[100]N (group B) between zirconia (Z) and NaCl (N). Group B has two variants and is the dominant type. The possible causes for the epitaxy relationship are discussed. Crystallites within the same group can merge by rotation and coalesce into a single crystal, whereas crystallites in different groups can form high-angle grain boundaries. (Part 3) Special interfaces were formed for the c- and/or t-ZrO2 (Z) nano-crystals when deposited on the NaCl (N) (100) cleavage plane by ion beam sputtering to follow the epitaxy relationships of [001]Z//[001]N, (100)Z//(1 0)N (group A); and [011]Z//[001]N, (100)Z//(100)N (group B1) or (100)Z//(010)N (group B2). The nanoparticles in group A and B were impinged and coalesced to form {220}A/{200}B and {200}A/{111}B interfaces; with anchored dislocation whereas those in group B1 and B2 form {220}B1/{200}B2 interface. The {220}A/{200}B interface is found to be of especially low energy due to good match O2¡V lattice sites, and smoothly joints {200} and {220} planes across the interfaces without mismatch strain and dislocations. The special interfaces may shed light on the epitaxial mechanism of nanocrystalline materials in general. (Part 4)
69

HPLC separation of amines with a zirconia-based column coupled to a gas- phase chemiluminescence nitrogen specific detector (CLND)

Salinas, Silvia Adriana 30 September 2004 (has links)
Gas phase chemiluminescence nitrogen specific detector (CLND)is used for the direct analysis of underivatized nitrogen-containing components such as alkylamines that can not be detected by the so called universal HPLC detector, the UV detector. However, alkali metal hydroxides can not be used as mobile phase constituents with the CLND because they form non volatile particulate combustion products that foul the detector. Therefore, trimethylsulfonium hydroxide (TMSOH) has been selected as a strong base for use with the CLND, because its combustion products, CO2, H2O and SxOy are volatile. An alkali-stable zirconia-based column was used and coupled to the CLND. Zirconia-based columns are mechanically and hydrolytically more stable than silica-based columns, which have a working pH range from 3 to 8 only. Zirconia-based columns can be used at a pH from 1 to 14 and can be used at temperatures up to 200˚C. The separation of amines was carried out at high pH values where the amino groups were deprotonated. Primary, secondary, tertiary and quaternary amines were separated using a pH=13.7 mobile phase that contained only TMSOH, methanol and water. Good peak shapes were observed for all, except n-alkylamines and samples that contained both amino groups and alcohol groups.
70

Influencia da microestrutura na tenacidade a fratura e resistencia a flexao da zirconia tetragonal policristalina

BASANI, HOMERO 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:37:08Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:40Z (GMT). No. of bitstreams: 1 01908.pdf: 6409813 bytes, checksum: a4da653568b2a1fde0228c02cc3838b9 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP

Page generated in 0.0438 seconds