• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive Discontinuous Galerkin Methods For Convectiondominated Optimal Control Problems

Yucel, Hamdullah 01 July 2012 (has links) (PDF)
Many real-life applications such as the shape optimization of technological devices, the identification of parameters in environmental processes and flow control problems lead to optimization problems governed by systems of convection diusion partial dierential equations (PDEs). When convection dominates diusion, the solutions of these PDEs typically exhibit layers on small regions where the solution has large gradients. Hence, it requires special numerical techniques, which take into account the structure of the convection. The integration of discretization and optimization is important for the overall eciency of the solution process. Discontinuous Galerkin (DG) methods became recently as an alternative to the finite dierence, finite volume and continuous finite element methods for solving wave dominated problems like convection diusion equations since they possess higher accuracy. This thesis will focus on analysis and application of DG methods for linear-quadratic convection dominated optimal control problems. Because of the inconsistencies of the standard stabilized methods such as streamline upwind Petrov Galerkin (SUPG) on convection diusion optimal control problems, the discretize-then-optimize and the optimize-then-discretize do not commute. However, the upwind symmetric interior penalty Galerkin (SIPG) method leads to the same discrete optimality systems. The other DG methods such as nonsymmetric interior penalty Galerkin (NIPG) and incomplete interior penalty Galerkin (IIPG) method also yield the same discrete optimality systems when penalization constant is taken large enough. We will study a posteriori error estimates of the upwind SIPG method for the distributed unconstrained and control constrained optimal control problems. In convection dominated optimal control problems with boundary and/or interior layers, the oscillations are propagated downwind and upwind direction in the interior domain, due the opposite sign of convection terms in state and adjoint equations. Hence, we will use residual based a posteriori error estimators to reduce these oscillations around the boundary and/or interior layers. Finally, theoretical analysis will be confirmed by several numerical examples with and without control constraints
2

Local Ill-Posedness and Source Conditions of Operator Equations in Hilbert Spaces

Hofmann, B., Scherzer, O. 30 October 1998 (has links) (PDF)
The characterization of the local ill-posedness and the local degree of nonlinearity are of particular importance for the stable solution of nonlinear ill-posed problems. We present assertions concerning the interdependence between the ill-posedness of the nonlinear problem and its linearization. Moreover, we show that the concept of the degree of nonlinearity com bined with source conditions can be used to characterize the local ill-posedness and to derive a posteriori estimates for nonlinear ill-posed problems. A posteriori estimates are widely used in finite element and multigrid methods for the solution of nonlinear partial differential equations, but these techniques are in general not applicable to inverse an ill-posed problems. Additionally we show for the well-known Landweber method and the iteratively regularized Gauss-Newton method that they satisfy a posteriori estimates under source conditions; this can be used to prove convergence rates results.
3

Local Ill-Posedness and Source Conditions of Operator Equations in Hilbert Spaces

Hofmann, B., Scherzer, O. 30 October 1998 (has links)
The characterization of the local ill-posedness and the local degree of nonlinearity are of particular importance for the stable solution of nonlinear ill-posed problems. We present assertions concerning the interdependence between the ill-posedness of the nonlinear problem and its linearization. Moreover, we show that the concept of the degree of nonlinearity com bined with source conditions can be used to characterize the local ill-posedness and to derive a posteriori estimates for nonlinear ill-posed problems. A posteriori estimates are widely used in finite element and multigrid methods for the solution of nonlinear partial differential equations, but these techniques are in general not applicable to inverse an ill-posed problems. Additionally we show for the well-known Landweber method and the iteratively regularized Gauss-Newton method that they satisfy a posteriori estimates under source conditions; this can be used to prove convergence rates results.

Page generated in 0.1399 seconds