• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Álgebras algébricas absolutamente valuadas / Absolute valued algebraic algebras

Arrieta, Eddie Arrieta 14 November 2012 (has links)
O objetivo da dissertação é provar que toda álgebra, sobre o corpo dos números reais, algébrica e absolutamente valuada é de dimensão nita, e portanto isótopa a D . Observamos que H é a álgebra real dos Quatérnios e D R , C , H ou a álgebra real dos Octônios. A demonstração do resultado é feita gradualmente, considerando inicialmente álgebras reais absolutamente valuadas algébrica com unidade, a seguir com unidade e nalmente, algébrica. Na demonstração do teorema será necessário combinar resultados não triviais de álgebras não associativas, análise funcional, álgebras de Banach e técnicas de ultraprodutos de espaços normados. As álgebra absolutamente valuadas não são necessariamente associativas. Abraham Adrian 1947 mostrou que R , C , H e D são as únicas álgebras reais absolutamente valuadas dimensão nita e com unidade; o mesmo Albert dois anos depois, em 1949 , caracterizou Albert em de essas mesmas álgebras como as únicas que são absolutamente valuadas algébricas e com unidade sobre os reais. Em 1960 Fred B. Wright e Kazimierz Urbanik provaram que R , C , D são as únicas álgebra reais absolutamente valuadas e com unidade. Recentemente, em 1997 , Kaidi El-Amin, Maria Isabel Ramírez e Ángel Rodríguez Palacios mostraram que H e toda álgebra real absolutamente valuadas e algébrica é isótopa a uma de estas quatro. Nosso objetivo é desenvolver e unicar os resultados obtidos nestes 4 trabalhos. / Our goal here is to study the absolute valued algebraic real algebras. In order to reach our intention, we regard an absolute valued real algebra and on which one we impose: First, such one is nite-dimensional algebra; second; such one is algebraic algebra; third, such one is with unity; and in the end such one is algebraic algebra. In the latter case, our aim, it needs of certain classic results of functional analysis and others one of Banach algebras; then, we reach that such one real algebra is isotope to one of the classical absolute valued real algebras algebra and D R , C , H or D . Where H is the Quaternions real is the Octonions real algebra. The absolute valued algebras are not necessarily associative. Abraham Adrian Albert was the rst mathematician considering absolute valued algebras in a context not necessarily associative. In 1947 , he proved that any nite-dimensional absolute valued real algebra with unit element is isomorphic to either real eld H or the Octonions algebra D . Two years R , the complex eld C , the Quaternions algebra later, he demonstrated that R , C , H and D are the unique absolute valued algebraic real algebras with unit element. Recently, in 1997 , Kaidi El-Amin, Maria Isabel Ramírez and Ángel Rodríguez Palacios proved that any absolute valued algebraic real algebra is nite-dimensional.
2

Problems in the Classification Theory of Non-Associative Simple Algebras

Darpö, Erik January 2009 (has links)
In spite of its 150 years history, the problem of classifying all finite-dimensional division algebras over a field k is still unsolved whenever k is not algebraically closed. The present thesis concerns some different aspects of this problem, and the related problems of classifying all composition and absolute valued algebras. A tripartition of the class of all fields is given, based on the dimensions in which division algebras over a field exist. Moreover, all finite-dimensional flexible real division algebras are classified. This class includes in particular all finite-dimensional commutative real division algebras, of which two different classifications, along different lines, are presented. It is shown that every vector product algebra has dimension zero, one, three or seven, and that its isomorphism type is determined by its adherent quadratic form. This yields a new and elementary proof for the corresponding, classical result for unital composition algebras. A rotation in a Euclidean space is an orthogonal map that locally acts as a plane rotation with a fixed angle. All pairs of rotations in finite-dimensional Euclidean spaces are classified up to orthogonal similarity. A description of all composition algebras having an LR-bijective idempotent is given. On the basis of this description, all absolute valued algebras having a one-sided unity or a non-zero central idempotent are classified.
3

A Categorical Study of Composition Algebras via Group Actions and Triality

Alsaody, Seidon January 2015 (has links)
A composition algebra is a non-zero algebra endowed with a strictly non-degenerate, multiplicative quadratic form. Finite-dimensional composition algebras exist only in dimension 1, 2, 4 and 8 and are in general not associative or unital. Over the real numbers, such algebras are division algebras if and only if they are absolute valued, i.e. equipped with a multiplicative norm. The problem of classifying all absolute valued algebras and, more generally, all composition algebras of finite dimension remains unsolved. In dimension eight, this is related to the triality phenomenon. We approach this problem using a categorical language and tools from representation theory and the theory of algebraic groups. We begin by considering the category of absolute valued algebras of dimension at most four. In Paper I we determine the morphisms of this category completely, and describe their irreducibility and behaviour under the actions of the automorphism groups of the algebras. We then consider the category of eight-dimensional absolute valued algebras, for which we provide a description in Paper II in terms of a group action involving triality. Then we establish general criteria for subcategories of group action groupoids to be full, and applying this to the present setting, we obtain hitherto unstudied subcategories determined by reflections. The reflection approach is further systematized in Paper III, where we obtain a coproduct decomposition of the category of finite-dimensional absolute valued algebras into blocks, for several of which the classification problem does not involve triality. We study these in detail, reducing the problem to that of certain group actions, which we express geometrically. In Paper IV, we use representation theory of Lie algebras to completely classify all finite-dimensional absolute valued algebras having a non-abelian derivation algebra. Introducing the notion of quasi-descriptions, we reduce the problem to the study of actions of rotation groups on products of spheres. We conclude by considering composition algebras over arbitrary fields of characteristic not two in Paper V. We establish an equivalence of categories between the category of eight-dimensional composition algebras with a given quadratic form and a groupoid arising from a group action on certain pairs of outer automorphisms of affine group schemes

Page generated in 0.0602 seconds