471 |
The influence of surface functional groups on β-lactoglobulin adsorption equilibriumAl-Makhlafi, Hamood K. 11 August 1992 (has links)
Interactions between proteins and contact surfaces can have
important implications in the food industry. Such interactions
contribute to the course of fouling of membrane surfaces and they
appear to mediate bacterial and spore adhesion to some degree as
well. In addition to protein and solution properties, interfacial
behavior is strongly influenced by contact surface properties. Among
these, hydrophobicity and the potential to take part in acid-base
interaction have received considerable attention, but in a quantitative
sense we know very little about their respective influences on protein
adsorption. It was the purpose of this research to quantify the
equilibrium adsorptive behavior of the milk protein β-lactoglobulin as
it is influenced by the presence of different contact surface functional
groups.
Monocrystalline and polished silicon surfaces were modified to be
hydrophilic by oxidation and hydrophobic by silanization with dichlorodiethylsilane (DDES), dichlorodimethylsilane (DDMS), and
dichlorodiphenylsilane (DDPS), each used at concentrations of 0.82,
3.3, and 82 mM. Surface hydrophobicities were evaluated with contact
angle methods. Adsorption isotherms were constructed after allowing
each modified silicon surface to independently contact β-lactoglobulin
(0.01 M phosphate buffer, pH 7.0) at concentrations ranging between
200 and 2000 mg/L for eight h at room temperature. Surfaces were
then rinsed and dried. Optical properties of the bare- and
film-covered surfaces, necessary for calculation of adsorbed mass,
were obtained by ellipsometry.
Plots of adsorbed mass as a function of protein concentration
exhibited attainment of plateau values beyond a protein concentration
of about 200 mg/L. At high silane concentration, the plateau values
associated with surfaces exhibiting ethyl groups were observed to be
greatest followed by those exhibiting phenyl, methyl, then hydrophilic
(OH) groups. At the low DDMS and DDES concentrations (0.82 and 3.3
mM), adsorbed mass did not increase beyond that value recorded for
the hydrophilic surface. This is likely due to some critical spacing of
methyl and ethyl groups being required to produce a favorable
hydrophobic effect on adsorption. For surfaces treated with
dichlorodiphenylsilane, adsorbed mass increased with silane
concentration. Apparently, a favorable acid-base interaction effected by
the hydrophilic surface is inhibited by the presence of small amounts
of methyl and ethyl groups, but somewhat less inhibited by the
presence of phenyl groups because the latter have the ability to
undergo acid-base interaction. / Graduation date: 1993
|
472 |
A physically based analytical model to predict infiltration under surge irrigation.Killen, Mark Albert. January 1988 (has links)
A significant advantage attributed to surge flow irrigation is that for the same volume of water applied the stream will advance farther along the furrow than with continuous flow. This potentially will reduce runoff and deep percolation which will improve uniformity and application efficiency where this advance phenomenon holds. The mechanism for improvement in advance time has generally been ascribed to surface sealing and surface layer consolidation. However, these phenomena do not satisfactorily explain improved advance times in sandy soils. Widely used infiltration equations which require the determination of empirical coefficients are unsatisfactory as predictors of infiltration conditions of intermittent wetting. The Green-Ampt model and a simple redistribution model are combined into an analytical model to predict infiltration under surge irrigation. The model results are compared to infiltration tests on soil columns of three soils of different soil textures. Also the model and the experimental results from the soil columns are compared to predictions made by two numerical solutions of the Richard's equation. One of the numerical models includes the effect of hysteresis by the use of Mualem's model to predict the variation of moisture content with potential, the other numerical model neglects the effect of hysteresis. A comparison of the analytical and the numerical models shows good agreement in their predictions for the soils and surge cycles tested. A comparison of predictions made by all three models shows good correlation to the experimental results. Although the number of tests done on the analytical model were limited it appears to be nearly as good a predictor of infiltration as the numerical models. The greatest strength of the analytical model is that while the numerical models took many hours to do a single run, the analytical model took only a few minutes. Both model and experimental results indicate that there was no reduction in infiltration rates or volumes infiltrated with intermittent as compared to continuous wetting. Thus the reduction in hydraulic gradient is not a factor in the reduced infiltration observed by others.
|
473 |
Predicting Passive Intestinal Drug Absorption: An Interesting Relationship between Fraction Absorbed and Melting PointChu, Katherine A. January 2009 (has links)
Oral drug administration remains the most popular route of drug delivery. Absorption of the dissolved drug through the intestinal epithelial membrane is a prerequisite to systemic bioavailability and drug efficacy. In efforts to reduce the long lead times, attrition rates, and costs of drug discovery and development, computational models have been developed to predict the membrane permeability and absorption efficiency of a dosed drug. Many models utilize various molecular descriptors to correlate with in vitro permeability or human intestinal absorption data. It is widely accepted that the two most significant physicochemical properties that control a compound's passive transport process are its aqueous solubility and lipophilicity characteristics.This work will discuss the theoretical background of passive transport, a number of computational models developed to predict in vitro permeability, other models that predict human fraction of dose absorbed, and predicting absorption efficiency relative to a maximum dose. A newly developed prediction method is also presented, that reveals an interesting relationship between fraction absorbed and the melting point of the drug.
|
474 |
DERMAL ABSORPTION AND TISSUE DISTRIBUTION OF PHTHALATE DIESTERS AND PHTHALIC ACID.El Sisi, Alaa El Din El Sayed. January 1983 (has links)
No description available.
|
475 |
Development and performance characterisation of a novel gas-liquid contacting stageNicholls, M. P. January 1999 (has links)
No description available.
|
476 |
The HFE gene in haemochromatosis and liver diseaseWallace, Daniel Frederick January 1999 (has links)
No description available.
|
477 |
An investigation into liquid film absorbers for refrigeration systemsIbrahim, G. A. January 1991 (has links)
No description available.
|
478 |
The influence of hygrothermal ageing on polymeric composite sandwich materials and structuresEarl, Jacqueline Sonia January 2001 (has links)
No description available.
|
479 |
Enhanced sensitivity and speed in photomultiplier tubesHallensleben, Sebastian January 2000 (has links)
No description available.
|
480 |
The cutaneous disposition of the sensitizing chemicals hydroxycitronellal and dinitrochlorobenzeneTonge, Robert Patrick January 1995 (has links)
No description available.
|
Page generated in 0.1045 seconds