1 |
Integral Representations of Positive Linear FunctionalsSiple, Angela 01 January 2015 (has links)
In this dissertation we obtain integral representations for positive linear functionals on commutative algebras with involution and semigroups with involution. We prove Bochner and Plancherel type theorems for representations of positive functionals and show that, under some conditions, the Bochner and Plancherel representations are equivalent. We also consider the extension of positive linear functionals on a Banach algebra into a space of pseudoquotients and give under conditions in which the space of pseudoquotients can be identified with all Radon measures on the structure space. In the final chapter we consider a system of integrated Cauchy functional equations on a semigroup, which generalizes a result of Ressel and offers a different approach to the proof.
|
2 |
Von Neumann Algebras for Abstract Harmonic AnalysisZwarich, Cameron January 2008 (has links)
This thesis develops the theory of operator algebras from the perspective of abstract harmonic analysis, and in particular, the theory of von Neumann algebras. Results from operator algebras are applied to the study of spaces of coefficient functions of unitary representations of locally compact groups, and in particular, the Fourier algebra of a locally compact group. The final result, which requires most of the material developed in earlier sections, is that the group von Neumann algebra of a locally compact group is in standard form.
|
3 |
Von Neumann Algebras for Abstract Harmonic AnalysisZwarich, Cameron January 2008 (has links)
This thesis develops the theory of operator algebras from the perspective of abstract harmonic analysis, and in particular, the theory of von Neumann algebras. Results from operator algebras are applied to the study of spaces of coefficient functions of unitary representations of locally compact groups, and in particular, the Fourier algebra of a locally compact group. The final result, which requires most of the material developed in earlier sections, is that the group von Neumann algebra of a locally compact group is in standard form.
|
4 |
Fast Algorithms for Analyzing Partially Ranked DataMcDermott, Matthew 01 January 2014 (has links)
Imagine your local creamery administers a survey asking their patrons to choose their five favorite ice cream flavors. Any data collected by this survey would be an example of partially ranked data, as the set of all possible flavors is only ranked into subsets of the chosen flavors and the non-chosen flavors. If the creamery asks you to help analyze this data, what approaches could you take? One approach is to use the natural symmetries of the underlying data space to decompose any data set into smaller parts that can be more easily understood. In this work, I describe how to use permutation representations of the symmetric group to create and study efficient algorithms that yield such decompositions.
|
Page generated in 0.1018 seconds