• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intramolecular cyclization strategies for synthesizing medium-ring polycycles and the total synthesis of natural products

Patil, Dadasaheb V. 16 August 2012 (has links)
Carbo- and heterocyclic compounds are of great interest to chemists. Intramolecular cyclization strategies of donor-acceptor (D-A) cyclopropanes and alkylidene malonate monoamides have excellent potential for synthesis as they offer easy access to structurally-diverse compounds. The work described in this thesis accesses the scope of the In(OTf)3-catalyzed cyclization reaction of cyclopropanes and alkylidene malonate monoamides. In(OTf)3-catalyzed reactions of alkenyl and heteroaryl cyclopropyl ketones were examined in the synthesis of functionalized cyclohexenone-based derivatives (Chapter 2). Subsequent efforts to utilize a tandem cyclopropane ring-opening/Friedel-Crafts alkylation sequence of methyl 1-(1H-indolecarbonyl)-1-cyclopropanecarboxylates to prepare functionalized hydropyrido[1,2-a]indole-6(7H)-ones is discussed in Chapter 3. The extension of this tandem protocol towards the total synthesis of (±)-deethyleburnamonine is the subject of Chapter 6. Intramolecular Friedel-Crafts alkylation of N-indolyl alkylidene malonate monoamides was also examined. An In(OTf)3-catalyzed cyclization of substituted methyl 2-(1H-indole-1-carbonyl) acrylates afforded a series of 1H-pyrrolo[1,2-a]indole-3(2H)-ones (Chapter 4), whereas substrates with the indole 2-position blocked provided access to substituted 4H-pyrrolo[3,2,1-ij]quinolin-4-ones (Chapter 5).

Page generated in 0.0698 seconds