Spelling suggestions: "subject:"accesscontrol"" "subject:"accesskontroll""
251 |
OFDM PHY Layer Implementation based on the 802.11 a Standard and system performance analysisZarzo Fuertes, Luis January 2005 (has links)
Wireless communication is facing one of the fastest developments of the last years in the fields of technology and computer science in the world. There are several standards that deal with it. In this work, the IEEE standard 802.11a, which deals with wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, is going to be discussed in detail. Taking this into consideration, PHY specifications and its environment are going to be studied. The work that the ISY department at the Institute of Technology of the Linköping University has proposed is to design a PHY layer implementation for WLANs, in a CPU, using MATLAB/Simulink and in a DSP processor, using Embedded Target for C6000 DSP and Code Composer Studio and, once implemented both, to perform and analyse the performance of the system under those implementations.
|
252 |
Investigation of IEEE Standard 802.11 Medium Access Control (MAC) Layer in ad-hocGarcia Torre, Fernando January 2006 (has links)
This thesis involved a research of mechanisms of MAC layer in the ad-hoc networks environment, the ad-hoc networks in the terminology of the standard are called IBSS Independent Basic Service, these type of networks are very useful in real situation where there are not the possibility of display a infrastructure, when there isn’t a network previous planning. The connection to a new network is one of the different with the most common type of Wireless Local Area Networks (WLAN) that are the ones with infrastructure. The connection is established without the presence of a central station, instead the stations discover the others with broadcast messages in the coverage area of each station. In the context of standard 802.11 networks the communication between the stations is peer to peer, only with one hop. To continue with initiation process is necessary the synchronization between the different stations of his timers. The other capital mechanism that is treated is the medium access mechanism, to hold a shared and unreliable medium, all the heavy of this issue goes to the distributed coordination function DCF. In this moment there is an emergent technology, WIMAX or standard IEEE 802.16, like the standard 802.11 is a wireless communication protocol. Some comparison between the MAC layer mechanisms would be realized between these two standards
|
253 |
Distributed Medium Access Control for QoS Support in Wireless NetworksWang, Ping 28 April 2008 (has links)
With the rapid growth of multimedia applications and the advances of wireless communication technologies, quality-of-service (QoS) provisioning for multimedia services in heterogeneous wireless networks has been an important issue and drawn much attention from both academia and industry. Due to the hostile transmission environment and limited radio resources, QoS provisioning in wireless networks is much more complex and difficult than in its wired counterpart. Moreover, due to the lack of central controller in the networks, distributed network control is required, adding complexity to QoS provisioning. In this thesis, medium access control (MAC) with QoS provisioning is investigated for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks.
Originally designed for high-rate data traffic, a WLAN has limited capability to support delay-sensitive voice traffic, and the service for voice traffic may be impacted by data traffic load, resulting in delay violation or large delay variance. Aiming at addressing these limitations, we propose an efficient MAC scheme and a call admission control algorithm to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition to supporting voice traffic, providing better services for data traffic in WLANs is another focus of our research. In the current WLANs, all the data traffic receives the same best-effort service, and it is difficult to provide further service differentiation for data traffic based on some specific requirements of customers or network service providers. In order to address this problem, we propose a novel token-based scheduling scheme, which provides great flexibility and facility to the network service provider for service class management.
As a WLAN has small coverage and cannot meet the growing demand for wireless service requiring
communications ``at anywhere and at anytime", a large scale multi-hop wireless network (e.g., wireless ad hoc
networks and wireless mesh networks) becomes a necessity. Due to the location-dependent contentions, a number of problems (e.g., hidden/exposed terminal problem, unfairness, and priority reversal problem) appear in a multi-hop wireless environment, posing more challenges for QoS provisioning. To address these challenges, we propose a novel busy-tone based distributed MAC scheme for wireless ad hoc networks, and a collision-free MAC scheme for wireless mesh networks, respectively, taking the different network characteristics into consideration. The proposed schemes enhance the QoS provisioning capability to real-time traffic and, at the same time, significantly improve the system throughput and fairness performance for data traffic, as compared with the most popular IEEE 802.11 MAC scheme.
|
254 |
Design, Modeling, and Analysis for MAC Protocols in Ultra-wideband NetworksLiu, Kuang-Hao January 2008 (has links)
Ultra-wideband (UWB) is an appealing transmission technology for
short-range, bandwidth demanded wireless communications. With the
data rate of several hundred megabits per second, UWB demonstrates
great potential in supporting multimedia streams such as
high-definition television (HDTV), voice over Internet Protocol
(VoIP), and console gaming in office or home networks, known as the
wireless personal area network (WPAN). While vast research effort
has been made on the physical layer issues of UWB, the corresponding
medium access control (MAC) protocols that exploit UWB technology
have not been well developed.
Given an extremely wide bandwidth of UWB, a fundamental problem on
how to manage multiple users to efficiently utilize the bandwidth is
a MAC design issue. Without explicitly considering the physical
properties of UWB, existing MAC protocols are not optimized for
UWB-based networks. In addition, the limited processing capability
of UWB devices poses challenges to the design of low-complexity MAC
protocols. In this thesis, we comprehensively investigate the MAC
protocols for UWB networks. The objective is to link the physical
characteristics of UWB with the MAC protocols to fully exploit its
advantage. We consider two themes: centralized and distributed UWB
networks.
For centralized networks, the most critical issue surrounding the
MAC protocol is the resource allocation with fairness and quality of
service (QoS) provisioning. We address this issue by breaking down
into two scenarios: homogeneous and heterogeneous network
configurations. In the homogeneous case, users have the same
bandwidth requirement, and the objective of resource allocation is
to maximize the network throughput. In the heterogeneous case, users
have different bandwidth requirements, and the objective of resource
allocation is to provide differentiated services. For both design
objectives, the optimal scheduling problem is NP-hard. Our
contributions lie in the development of low-complexity scheduling
algorithms that fully exploit the characteristics of UWB.
For distributed networks, the MAC becomes node-based problems,
rather than link-based problems as in centralized networks. Each
node either contends for channel access or reserves transmission
opportunity through negotiation. We investigate two representative
protocols that have been adopted in the WiMedia specification for
future UWB-based WPANs. One is a contention-based protocol called
prioritized channel access (PCA), which employs the same mechanisms
as the enhanced distributed channel access (EDCA) in IEEE 802.11e
for providing differentiated services. The other is a
reservation-based protocol called distributed reservation protocol
(DRP), which allows time slots to be reserved in a distributed
manner. Our goal is to identify the capabilities of these two
protocols in supporting multimedia applications for UWB networks. To
achieve this, we develop analytical models and conduct detailed
analysis for respective protocols. The proposed analytical models
have several merits. They are accurate and provide close-form
expressions with low computational effort. Through a cross-layer
approach, our analytical models can capture the near-realistic
protocol behaviors, thus useful insights into the protocol can be
obtained to improve or fine-tune the protocol operations. The
proposed models can also be readily extended to incorporate more
sophisticated considerations, which should benefit future UWB
network design.
|
255 |
A Statistically Rigorous Evaluation of the Cascade Bloom Filter for Distributed Access Enforcement in Role-Based Access Control (RBAC) SystemsZitouni, Toufik January 2010 (has links)
We consider the distributed access enforcement problem for Role-Based
Access Control (RBAC) systems. Such enforcement has become important
with RBAC’s increasing adoption, and the proliferation of data that
needs to be protected. Our particular interest is in the evaluation of a
new data structure that has recently been proposed for enforcement: the
Cascade Bloom Filter. The Cascade Bloom Filter is an extension of the
Bloom filter, and provides for time- and space-efficient encodings of
sets. We compare the Cascade Bloom Filter to the Bloom Filter, and
another approach called Authorization Recycling that has been proposed
for distributed access enforcement in RBAC. One of the challenges we
address is the lack of a benchmark: we propose and justify a benchmark
for the assessment. Also, we adopt a statistically rigorous approach for
empirical assessment from recent work. We present our results for time-
and space-efficiency based on our benchmark. We demonstrate that, of the
three data structures that we consider, the Cascade Bloom Filter scales the
best with the number of RBAC sessions from the standpoints of time- and
space-efficiency.
|
256 |
Energy Efficient Protocols for Delay Tolerant NetworksChoi, Bong Jun January 2011 (has links)
The delay tolerant networks (DTNs) is characterized by frequent disconnections and long delays of links among devices due to mobility, sparse deployment of devices, attacks, and noise, etc. Considerable research efforts have been devoted recently to DTNs enabling communications between network entities with intermittent connectivity. Unfortunately, mobile devices have limited energy capacity, and the fundamental problem is that traditional power-saving mechanisms are designed assuming well connected networks. Due to much larger inter-contact durations than contact durations, devices spend most of their life time in the neighbor discovery, and centralized power-saving strategies are difficult. Consequently, mobile devices consume a significant amount of energy in the neighbor discovery, rather than in infrequent data transfers. Therefore, distributed energy efficient neighbor discovery protocols for DTNs are essential to minimize the degradation of network connectivity and maximize the benefits from mobility.
In this thesis, we develop sleep scheduling protocols in the medium access control (MAC) layer that are adaptive and distributed under different clock synchronization conditions: synchronous, asynchronous, and semi-asynchronous. In addition, we propose a distributed clock synchronization protocol to mitigate the clock synchronization problem in DTNs. Our research accomplishments are briefly outlined as follows:
Firstly, we design an adaptive exponential beacon (AEB) protocol. By exploiting the trend of contact availability, beacon periods are independently adjusted by each device and optimized using the distribution of contact durations. The AEB protocol significantly reduces energy consumption while maintaining comparable packet delivery delay and delivery ratio.
Secondly, we design two asynchronous clock based sleep scheduling (ACDS) protocols. Based on the fact that global clock synchronization is difficult to achieve in general, predetermined patterns of sleep schedules are constructed using hierarchical arrangements of cyclic difference sets such that devices independently selecting different duty cycle lengths are still guaranteed to have overlapping awake intervals with other devices within the communication range.
Thirdly, we design a distributed semi-asynchronous sleep scheduling (DSA) protocol. Although the synchronization error is unavoidable, some level of clock accuracy may be possible for many practical scenarios. The sleep schedules are constructed to guarantee contacts among devices having loosely synchronized clocks, and parameters are optimized using the distribution of synchronization error. We also define conditions for which the proposed semi-asynchronous protocol outperforms existing asynchronous sleep scheduling protocols.
Lastly, we design a distributed clock synchronization (DCS) protocol. The proposed protocol considers asynchronous and long delayed connections when exchanging relative clock information among nodes. As a result, smaller synchronization error achieved by the proposed protocol allows more accurate timing information and renders neighbor discovery more energy efficient.
The designed protocols improve the lifetime of mobile devices in DTNs by means of energy efficient neighbor discoveries that reduce the energy waste caused by idle listening problems.
|
257 |
Throughput Optimization in Multi-hop Wireless Networks with Random AccessUddin, Md. Forkan January 2011 (has links)
This research investigates cross-layer design in multi-hop wireless networks with
random access. Due to the complexity of the problem, we study cross-layer design
with a simple slotted ALOHA medium access control (MAC) protocol without considering any network dynamics. Firstly, we study the optimal joint configuration of routing and MAC parameters in slotted ALOHA based wireless networks under a signal to interference plus noise ratio based physical interference model. We formulate a
joint routing and MAC (JRM) optimization problem under a saturation assumption
to determine the optimal max-min throughput of the flows and the optimal configuration of routing and MAC parameters. The JRM optimization problem is a complex
non-convex problem. We solve it by an iterated optimal search (IOS) technique and
validate our model via simulation. Via numerical and simulation results, we show
that JRM design provides a significant throughput gain over a default configuration
in a slotted ALOHA based wireless network.
Next, we study the optimal joint configuration of routing, MAC, and network
coding in wireless mesh networks using an XOR-like network coding without opportunistic listening. We reformulate the JRM optimization problem to include the
simple network coding and obtain a more complex non-convex problem. Similar to
the JRM problem, we solve it by the IOS technique and validate our model via simulation. Numerical and simulation results for different networks illustrate that (i) the jointly optimized configuration provides a remarkable throughput gain with respect
to a default configuration in a slotted ALOHA system with network coding and (ii)
the throughput gain obtained by the simple network coding is significant, especially
at low transmission power, i.e., the gain obtained by jointly optimizing routing, MAC,
and network coding is significant even when compared to an optimized network without network coding. We then show that, in a mesh network, a significant fraction of
the throughput gain for network coding can be obtained by limiting network coding
to nodes directly adjacent to the gateway.
Next, we propose simple heuristics to configure slotted ALOHA based wireless
networks without and with network coding. These heuristics are extensively evaluated
via simulation and found to be very efficient. We also formulate problems to jointly
configure not only the routing and MAC parameters but also the transmission rate
parameters in multi-rate slotted ALOHA systems without and with network coding.
We compare the performance of multi-rate and single rate systems via numerical
results.
We model the energy consumption in terms of slotted ALOHA system parameters.
We found out that the energy consumption for various cross-layer systems, i.e., single
rate and multi-rate slotted ALOHA systems without and with network coding, are
very close.
|
258 |
Secure Schemes for Semi-Trusted EnvironmentTassanaviboon, Anuchart January 2011 (has links)
In recent years, two distributed system technologies have emerged: Peer-to-Peer (P2P) and cloud computing. For the former, the computers at the edge of networks share their resources, i.e., computing power, data, and network bandwidth, and obtain resources from other peers in the same community. Although this technology enables efficiency, scalability, and availability at low cost of ownership and maintenance, peers defined as ``like each other'' are not wholly controlled by one another or by the same authority. In addition, resources and functionality in P2P systems depend on peer contribution, i.e., storing, computing, routing, etc. These specific aspects raise security concerns and attacks that many researchers try to address. Most solutions proposed by researchers rely on public-key certificates from an external Certificate Authority (CA) or a centralized Public Key Infrastructure (PKI). However, both CA and PKI are contradictory to fully decentralized P2P systems that are self-organizing and infrastructureless.
To avoid this contradiction, this thesis concerns the provisioning of public-key certificates in P2P communities, which is a crucial foundation for securing P2P functionalities and applications. We create a framework, named the Self-Organizing and Self-Healing CA group (SOHCG), that can provide certificates without a centralized Trusted Third Party (TTP). In our framework, a CA group is initialized in a Content Addressable Network (CAN) by trusted bootstrap nodes and then grows to a mature state by itself. Based on our group management policies and predefined parameters, the membership in a CA group is dynamic and has a uniform distribution over the P2P community; the size of a CA group is kept to a level that balances performance and acceptable security. The muticast group over an underlying CA group is constructed to reduce communication and computation overhead from collaboration among CA members. To maintain the quality of the CA group, the honest majority of members is maintained by a Byzantine agreement algorithm, and all shares are refreshed gradually and continuously. Our CA framework has been designed to meet all design goals, being self-organizing, self-healing, scalable, resilient, and efficient. A security analysis shows that the framework enables key registration and certificate issue with resistance to external attacks, i.e., node impersonation, man-in-the-middle (MITM), Sybil, and a specific form of DoS, as well as internal attacks, i.e., CA functionality interference and CA group subversion.
Cloud computing is the most recent evolution of distributed systems that enable shared resources like P2P systems. Unlike P2P systems, cloud entities are asymmetric in roles like client-server models, i.e., end-users collaborate with Cloud Service Providers (CSPs) through Web interfaces or Web portals. Cloud computing is a combination of technologies, e.g., SOA services, virtualization, grid computing, clustering, P2P overlay networks, management automation, and the Internet, etc. With these technologies, cloud computing can deliver services with specific properties: on-demand self-service, broad network access, resource pooling, rapid elasticity, measured services. However, theses core technologies have their own intrinsic vulnerabilities, so they induce specific attacks to cloud computing. Furthermore, since public clouds are a form of outsourcing, the security of users' resources must rely on CSPs' administration. This situation raises two crucial security concerns for users: locking data into a single CSP and losing control of resources. Providing inter-operations between Application Service Providers (ASPs) and untrusted cloud storage is a countermeasure that can protect users from lock-in with a vendor and losing control of their data.
To meet the above challenge, this thesis proposed a new authorization scheme, named OAuth and ABE based authorization (AAuth), that is built on the OAuth standard and leverages Ciphertext-Policy Attribute Based Encryption (CP-ABE) and ElGamal-like masks to construct ABE-based tokens. The ABE-tokens can facilitate a user-centric approach, end-to-end encryption and end-to-end authorization in semi-trusted clouds. With these facilities, owners can take control of their data resting in semi-untrusted clouds and safely use services from unknown ASPs. To this end, our scheme divides the attribute universe into two disjointed sets: confined attributes defined by owners to limit the lifetime and scope of tokens and descriptive attributes defined by authority(s) to certify the characteristic of ASPs. Security analysis shows that AAuth maintains the same security level as the original CP-ABE scheme and protects users from exposing their credentials to ASP, as OAuth does. Moreover, AAuth can resist both external and internal attacks, including untrusted cloud storage. Since most cryptographic functions are delegated from owners to CSPs, AAuth gains computing power from clouds. In our extensive simulation, AAuth's greater overhead was balanced by greater security than OAuth's. Furthermore, our scheme works seamlessly with storage providers by retaining the providers' APIs in the usual way.
|
259 |
Studies in Wireless Home Networking Including Coexistence of UWB and IEEE 802.11a SystemsFiroozbakhsh, Babak 25 January 2007 (has links)
Characteristics of wireless home and office services and the corresponding networking issues are discussed. Local Area Networking (LAN) and Personal Area Networking (PAN) technologies such as IEEE 802.11 and Ultra Wideband (UWB) are introduced. IEEE 802.11a and UWB systems are susceptible to interference from each other due to their overlapping frequencies. The major contribution of this work is to provide a framework for coexistence of the two systems. The interference between the two systems is evaluated theoretically by developing analytical models, and by simulations. It is shown that the interference from UWB on IEEE 802.11a systems is generally insignificant. IEEE 802.11a interference on UWB systems, however, is very critical and can significantly increase the bit error rate (BER) and degrade the throughput of the UWB system. A novel idea in the MAC layer is presented to mitigate this interference by means of temporal separation. Simulation results validate our technique. Implications to wireless home services such as high definition television (HDTV) are provided. Future research directions are discussed.
|
260 |
Medium Access Control for Multimedia Streaming over Wireless LANs with Multi-Beam Access PointHuang, Cong-qi 14 July 2011 (has links)
With the proliferation of mobile devices and the advance of audio/video coding technologies, there is an increasing demand to provide quality-of-service (QoS) guarantees for multimedia applications. A WLAN (wireless local are network) typically consists of an access point (AP) and a finite set of mobile stations. Since the AP is generally more powerful and less physical constraint than mobile stations, it is of great interest to consider the use of sectorized multi-beam antennas at the AP to boost the network throughput by exploiting the benefit of spatial reuse.
IEEE 802.11 is current the de facto standard for WLANs. However, if we directly apply 802.11 to the WLAN with multi-beam AP without any modification, we will encounter many challenging problems. Although existing solutions modify the 802.11 DCF (distributed coordination function) to solve these problems, yet DCF does not provide any QoS support.
On the basis of 802.11e HCCA (hybrid channel control access), in this thesis, we propose a novel MAC protocol, named MPCF (multi-beam AP-assisted point coordination function), which is not only backward compatible with DCF, but also supports QoS functionalities, including non-reversal prioritization, time-bounded reservation, admission control, and cross-layer rate adaptation for multimedia streaming.
Simulation results show that, in terms of throughput, frame delay dropped rate, and energy throughput, MPCF significantly outperforms existing protocols even in imperfect beam-forming and mobility environments.
|
Page generated in 0.0629 seconds