• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Testing of Flexible Aircraft Structures

Carlsson, Martin January 2004 (has links)
Methods for structural design, control, and testing offlexible aircraft structures are considered. Focus is onnonconventional aircraft con- figurations and control concepts.The interaction between analysis and testing is a central topicand all studies include validation testing and comparisonbetween computational and experimental results. The first part of the thesis is concerned with the designand testing of an aeroelastic wind-tunnel model representing aBlended Wing Body (BWB) aircraft. The investigations show thata somewhat simplified wind-tunnel model design concept isuseful and efficient for the type of investigations considered.Also, the studies indicate that well established numericaltools are capable of predicting the aeroelastic behavior of theBWB aircraft with reasonable accuracy. Accurate prediction ofthe control surface aerodynamics is however found to bedifficult. A new aerodynamic boundary element method for aeroelastictimedomain simulations and its experimental validation arepresented. The properties of the method are compared totraditional methods as well as to experimental results. Thestudy indicates that the method is capable of efficient andaccurate aeroelastic simulations. Next, a method for tailoring a structure with respect to itsaeroelastic behavior is presented. The method is based onnumerical optimization techniques and developed for efficientdesign of aeroelastic wind-tunnel models with prescribed staticand dynamic aeroelastic properties. Experimental validationshows that the design method is useful in practice and that itprovides a more efficient handling of the dynamic aeroelasticproperties compared to previous methods. Finally, the use of multiple control surfaces andaeroelastic effects for efficient roll maneuvering isconsidered. The idea is to design a controller that takesadvantage of the elasticity of the structure for performancebenefits. By use of optimization methods in combination with afairly simple control system, good maneuvering performance isobtained with minimal control effort. Validation testing usinga flexible wind-tunnel model and a real-time control systemshows that the control strategy is successful in practice.Keywords: aeroelasticity, active aeroelastic structures,aeroelastic tailoring, control, structural optimization,wind-tunnel testing. / QC 20120320
2

Design and Testing of Flexible Aircraft Structures

Carlsson, Martin January 2004 (has links)
<p>Methods for structural design, control, and testing offlexible aircraft structures are considered. Focus is onnonconventional aircraft con- figurations and control concepts.The interaction between analysis and testing is a central topicand all studies include validation testing and comparisonbetween computational and experimental results.</p><p>The first part of the thesis is concerned with the designand testing of an aeroelastic wind-tunnel model representing aBlended Wing Body (BWB) aircraft. The investigations show thata somewhat simplified wind-tunnel model design concept isuseful and efficient for the type of investigations considered.Also, the studies indicate that well established numericaltools are capable of predicting the aeroelastic behavior of theBWB aircraft with reasonable accuracy. Accurate prediction ofthe control surface aerodynamics is however found to bedifficult.</p><p>A new aerodynamic boundary element method for aeroelastictimedomain simulations and its experimental validation arepresented. The properties of the method are compared totraditional methods as well as to experimental results. Thestudy indicates that the method is capable of efficient andaccurate aeroelastic simulations.</p><p>Next, a method for tailoring a structure with respect to itsaeroelastic behavior is presented. The method is based onnumerical optimization techniques and developed for efficientdesign of aeroelastic wind-tunnel models with prescribed staticand dynamic aeroelastic properties. Experimental validationshows that the design method is useful in practice and that itprovides a more efficient handling of the dynamic aeroelasticproperties compared to previous methods.</p><p>Finally, the use of multiple control surfaces andaeroelastic effects for efficient roll maneuvering isconsidered. The idea is to design a controller that takesadvantage of the elasticity of the structure for performancebenefits. By use of optimization methods in combination with afairly simple control system, good maneuvering performance isobtained with minimal control effort. Validation testing usinga flexible wind-tunnel model and a real-time control systemshows that the control strategy is successful in practice.Keywords: aeroelasticity, active aeroelastic structures,aeroelastic tailoring, control, structural optimization,wind-tunnel testing.</p>
3

Optimal Design and Analysis of Bio-inspired, Curvilinearly Stiffened Composite Flexible Wings

Zhao, Wei 19 September 2017 (has links)
Large-aspect-ratio wings and composite structures both have been considered for the next-generation civil transport aircraft to achieve improved aerodynamic efficiency and to save aircraft structural weight. The use of the large-aspect-ratio and the light-weight composite wing can lead to an enhanced flexibility of the aircraft wing, which may cause many aeroelastic problems such as large deflections, increased drag, onset of flutter, loss of control authority, etc. Aeroelastic tailoring, internal structural layout design and aerodynamic wing shape morphing are all considered to address these aeroelastic problems through multidisciplinary design, analysis and optimization (MDAO) studies in this work. Performance Adaptive Aeroelastic Wing (PAAW) program was initiated by NASA to leverage the flexibility associated with the use of the large-aspect-ratio wings and light-weight composite structures in a beneficial way for civil transport aircraft wing design. The biologically inspired SpaRibs concept is used for aircraft wing box internal structural layout design to achieve the optimal stiffness distribution to improve the aircraft performance. Along with the use of the active aeroelastic wing concept through morphing wing shape including the wing jig-shape, the control surface rotations and the aeroelastic tailoring scheme using composite laminates with ply-drop for wing skin design, a MDAO framework, which has the capabilities in total structural weight minimization, total drag minimization during cruise, ground roll distance minimization in takeoff and load alleviation in various maneuver loads by morphing its shape, is developed for designing models used in the PAAW program. A bilevel programming (BLP) multidisciplinary design optimization (MDO) architecture is developed for the MDAO framework. The upper-level optimization problem entails minimization of weight, drag and ground roll distance, all subjected to both static constraints and the global dynamic requirements including flutter mode and free vibration modes due to the specified control law design for body freedom flutter suppression and static margin constraint. The lower-level optimization is conducted to minimize the total drag by morphing wing shape, to minimize wing root bending moment by scheduling flap rotations (a surrogate for weight reduction), and to minimize the takeoff ground roll distance. Particle swarm optimization and gradient-based optimization are used, respectively, in the upper-level and the lower-level optimization problems. Optimization results show that the wing box with SpaRibs can further improve the aircraft performances, especially in a large weight saving, as compared to the wing with traditional spars and ribs. Additionally, the nonuniform chord control surface associated with the wing with SpaRibs achieve further reductions in structural weight, total drag and takeoff ground roll distance for an improved aircraft performance. For a further improvement of the global wing skin panel design, an efficient finite element approach is developed in designing stiffened composite panels with arbitrarily shaped stiffeners for buckling and vibration analyses. The developed approach allows the finite element nodes for the stiffeners and panels not to coincide at the panel-stiffeners interfaces. The stiffness, mass and geometric stiffness matrices for the stiffeners can be transformed to those for the panel through the displacement compatibility at their interfaces. The method improves the feasible model used in shape optimizing by avoiding repeated meshing for stiffened plate. Also, it reduces the order of the finite element model, a fine mesh typically associated with the skin panel stiffened by many stiffeners, for an efficient structural analysis. Several benchmark cases have been studied to verify the accuracy of the developed approach for stiffened composite panel structural analyses. Several parametric studies are conducted to show the influence of stiffener shape/placement/depth-ratio on panel's buckling and vibration responses. The developed approach shows a potential benefit of using gradient-based optimization for stiffener shape design. / Ph. D.
4

Aeroelastic Concepts for Flexible Aircraft Structures

Heinze, Sebastian January 2007 (has links)
In this thesis, aeroelastic concepts for increased aircraft performance are developed and evaluated. Active aeroelastic concepts are in focus as well as robust analysis concepts aiming at efficient analysis using numerical models with uncertain or varying model parameters. The thesis presents different approaches for exploitation of fluid-structure interaction of active aeroelastic structures. First, a high aspect ratio wing in wind tunnel testing conditions is considered. The wing was developed within the European research project \textit{Active Aeroelastic Aircraft Structures} and used to demonstrate how structural flexibility can be exploited by using multiple control surfaces such that the deformed wing shape gives minimum drag for different flight conditions. Two different drag minimization studies are presented, one aiming at reduced induced drag based on numerical optimization techniques, another one aiming at reduced measured total drag using real-time optimization in the wind tunnel experiment. The same wing is also used for demonstration of an active concept for gust load alleviation using a piezoelectric tab. In all studies on the high aspect ratio wing, it is demonstrated that structural flexibility can be exploited to increase aircraft performance. Other studies in this thesis investigate the applicability of robust control tools for flutter analysis considering model uncertainty and variation. First, different techniques for taking large structural variations into account are evaluated. Next, a high-fidelity numerical model of an aircraft with a variable amount of fuel is considered, and robust analysis is applied to find the worst-case fuel configuration. Finally, a study investigating the influence of uncertain external stores aerodynamics is presented. Overall, the robust approach is shown to be capable of treating large structural variations as well as modeling uncertainties to compute worst-case configurations and flutter boundaries. / QC 20100713

Page generated in 0.0638 seconds