• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 11
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 105
  • 105
  • 94
  • 24
  • 18
  • 17
  • 16
  • 15
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Active Control of Vehicle Powertrain Noise using Adaptive Notch Filter with Inverse Model LMS Algorithm

Xu, Ji January 2015 (has links)
No description available.
62

Active noise reduction headphone measurement: Comparison of physical and psychophysical protocols and effects of microphone placement

Perala, Chuck H. 28 April 2006 (has links)
Currently in the United States, Active Noise Reduction (ANR) headphones cannot be tested and labeled as hearing protection devices (HPDs) due to inherent limitations with the existing psychophysical headphone testing standard, real-ear attenuation at threshold (REAT). This research focused on the use of a standard, for physical, microphone-in-real-ear testing, (MIRE, ANSI S12.42-1995), to determine if MIRE may be appropriately used to measure the total attenuation (i.e., passive + active) of ANR headphones. The REAT " Method B, Subject-Fit protocol," ANSI S12.6-1997(R2002), was also used to assess passive attenuation (and used for comparison with the MIRE data), as this is the current standard for passive Headphone attenuation testing. The MIRE protocol currently does not specify a standardized location for measurement microphone placement. Prior research is mixed as to the potential benefits and shortcomings of placing the measurement microphone outside versus inside the ear canal. This study captured and compared acoustic spectral data at three different microphone locations: in concha, in ear canal-shallow depth, and in ear canal-deep depth (with a probe tube microphone positioned near the tympanic membrane), using human test participants and five ANR headphones of differing design. Results indicate that the MIRE protocol may be used to supplant the REAT protocol for the measurement of passive attenuation, although differences were observed at the lowest-tested frequency of 125 Hz. Microphone placement analysis revealed no significant difference among the three locations specified, with a noted caveat for the probe tube microphone location at the highest tested frequency of 8000 Hz. Overall findings may be useful to standards-making committees for evaluating a viable solution and standardized method for testing and labeling ANR headphones for use as hearing protection devices. Microphone placement results may assist the practitioner in determining where to place measurement microphones to best suit their particular needs when using MIRE. Discussion includes an in-depth interpretation of the data, comparisons within and between each protocol, and recommendations for further avenues to explore based on the data presented. / Ph. D.
63

Decentralized control of sound radiation from periodically stiffened panels

Schiller, Noah Harrison 04 January 2008 (has links)
Active structural acoustic control has previously been used to reduce low-frequency sound radiation from relatively simple laboratory structures. However, significant implementation issues have to be addressed before active control can be used on large, complex structures such as an aircraft fuselage. The purpose of this project is to extend decentralized structural control systems from individual bays to more realistic airframe structures. In addition, to make this investigation more applicable to industry, potential control strategies are evaluated using a realistic aft-cabin disturbance identified from flight test data. This work focuses on decentralized control, which implies that each control unit is designed and implemented independently. While decentralized control systems are relatively scalable, performance can be limited due to the destabilizing interaction between neighboring controllers. An in-depth study of this problem demonstrates that the modeling error introduced by neighboring controllers can be expressed as the product of the complementary sensitivity function of the neighboring control unit multiplied by a term that quantifies the diagonal dominance of the plant. This understanding can be used to improve existing control strategies. For instance, decentralized performance can often be improved by penalizing control effort at the zeros of the local control model. This stabilizes each control unit and reduces the modeling error induced on neighboring controllers. Additional analyses show that the performance of decentralized model-based control systems can be improved by augmenting the structural damping using robust, low-authority control strategies such as direct velocity feedback and positive position feedback. Increasing the structural damping can supplement the performance of the model-based control strategy and reduce the destabilizing interaction between neighboring control units. Instead of using low-authority controllers to stabilize the decentralized control system, another option is to modify the model-based design. Specifically, an iterative approach is developed and validated using real-time control experiments performed on a structural-acoustic system with poles close to the stability boundary, non-minimum phase zeros, and unmodeled dynamics. Experiments demonstrate that the iterative control strategy, which combines frequency-shaped linear quadratic Gaussian (LQG) control with loop transfer recovery (LTR), is capable of achieving 12dB peak reductions and a 3.6dB integrated reduction in radiated sound power from a rib-stiffened aluminum panel. / Ph. D.
64

Active Noise Reduction Versus Passive Designs in Communication Headsets: Speech Intelligibility and Pilot Performance Effects in an Instrument Flight Simulation

Valimont, Robert Brian 08 May 2006 (has links)
Researchers have long known that general aviation (GA) aircraft exhibit some of the most intense and potentially damaging sound environments to a pilot's hearing. Yet, another potentially more ominous result of this noise-intense environment is the masking of the radio communications. Radio communications must remain intelligible, as they are imperative to the safe and efficient functioning of the airspace, especially the airspace surrounding our busiest airports, Class B and Class C. However, the high amplitude, low frequency noise dominating the GA cockpit causes an upward spreading of masking with such inference that it renders radio communications almost totally unintelligible, unless the pilot is wearing a communications headset. Even with a headset, some researchers have stated that the noise and masking effects overcome the headset performance and still threaten the pilot's hearing and overall safety while in the aircraft. In reaction to this situation, this experiment sought to investigate the effects which active noise reduction (ANR) headsets have on the permissible exposure levels (PELs), speech intelligibility, workload, and ultimately the pilot's performance inside the cockpit. Eight instrument-rated pilot participants flew through different flight tasks of varying levels and types of workload embedded in four 3.5 hour flight scenarios while wearing four different headsets. The 3.5 hours were considered long duration due the instrument conditions, severe weather conditions, difficult flight tasks, and the fatiguing effects of a high intensity noise environment. The noise intensity and spectrum in the simulator facility were specifically calibrated to mimic those of a Cessna 172. Speech intelligibility of radio communications was modified using the Speech Transmission Index (STI), while measures of flight performance and workload were collected to examine any relationships between workload, speech intelligibility, performance, and type of headset. It is believed that the low frequency attenuation advantages afforded by the ANR headset decreased the signal-to-noise ratio, thereby increasing speech intelligibility for the pilot. This increase may positively affect workload and flight performance. Estimates of subjective preference and comfort were also collected and analyzed for relevant relationships. The results of the experiment supported the above hypotheses. It was found that headsets which incorporate ANR technology do increase speech intelligibility which has a direct inverse influence on workload. For example, an increase in speech intelligibility is seen with a concomitant decrease in pilot workload across all types and levels of workload. Furthermore, flight task performance results show that the pilot's headset can facilitate safer flight performance. However, the factors that influence performance are more numerous and complex than those that affect speech intelligibility or workload. Factors such as the operational performance of the communications system in the headset, in addition to the ANR technology, were determined to be highly influential factors in pilot performance. This study has concluded that the pilot's headset has received much research and design attention as a noise attenuation device. However, it has been almost completely overlooked as a tool which could be used to facilitate the safety and performance of a general aviation flight. More research should focus on identifying and optimizing the headset components which contribute most to the results demonstrated in this experiment. The pilot's headset is a component of the aviation system which could economically improve the safety of the entire system. / Ph. D.
65

Attenuation of Turbulent Boundary Layer Induced Interior Noise Using Integrated Smart Foam Elements

D'Angelo, John Patrick 22 September 2004 (has links)
Research presented herein involved the use of a smart skin treatment used for the attenuation of turbulent boundary layer induced interior noise. The treatment consisted of several Smart Foam actuators each having a reference and error sensor along with a feed forward, filtered-x controller. Studies were performed to determine if the use of multiple instances of single input, single output (SISO) control systems could be implemented with success given the difficulty of actively suppressing turbulent boundary layer induced interior noise. Further, this research will lead to the development of an integrated Smart Foam element consisting of a Smart Foam actuator, reference sensor, error sensor and SISO controller in one complete, stand--alone unit. Several topics were studied during this effort: reference sensing, error sensing, actuator design, controller causality, correlation of turbulent flow and resulting plate vibration, and coherence between plate vibration and the interior noise field. Each study was performed with the goal of improving the performance of active attenuation of turbulent boundary layer induced interior noise. Depending on the configuration of the control system, control was performed using either experiments or simulations based on experimental data. Within the desired control band of 400--800~Hz, attenuation of up to -3.1~dB$_A$ was achieved at the error sensors and up to -1.4~dB$_A$ within the observer plane relative to the uncontrolled case. However, over a band of greater coherence from 480--750~Hz, attenuation of up to -4.8~dB$_A$ was achieved at the error sensors and up to -2.6~dB$_A$ within the observer plane. Further, peak attenuation of up to -12~dB$_A$ was achieved within the observer plane. Studies were also conducted to increase the low frequency performance of the Smart Foam treatment. These experiments used tuning masses placed on the tops of the integrated Smart Foam elements to tune them to the fundamental mode of the vibrating plate. This treatment was used to reactively attenuate plate vibration such that the radiated acoustic field would be minimized. These experiments resulted in -6~dB$_A$ global attenuation at the plate fundamental resonance. Further, it was shown that the reactive treatment did not inhibit active control. / Ph. D.
66

A Study of Smart Foam for Noise Control Applications

Gentry-Grace, Cassandra Ann 11 May 1998 (has links)
Smart foam is a composite noise control treatment that consists of a distributed piezoelectric actuator, known as polyvinylidene fluoride (PVDF), embedded within a layer of partially-reticulated polyurethane foam. The principal function of smart foam is to yield broadband sound attenuation. Passive acoustic foams are a very reliable high-frequency sound reduction method. With regard to smart foam, the embedded piezoelectric actuator is introduced to overcome the limitations of the passive foam in the low-frequency region. The piezoelectric actuator excites the structural and acoustic phases of the foam when driven by an externally supplied control voltage. This generates a secondary acoustic field which destructively interacts with the acoustic field created by a primary noise source. Initial experiments employ the composite "active/passive" treatment to yield attenuation of piston sound radiation. For this simple source, the global farfield pressure is minimized according to the feedforward, Filtered-x LMS control algorithm using one error sensor. Significant broadband sound attenuation is obtained. A more advanced noise control problem is investigated which minimizes plate radiation. The vibrating plate has a distributed modal response requiring a collective array of independently-phased smart foam actuators to yield reduction of the radiated sound power. This is accomplished by minimizing the sound pressure at an array of nearfield microphones. Good broadband sound power reduction is obtained using a MIMO (multiple-input/multiple-output) Filtered-x LMS control scheme. Various techniques for improving smart foam's acoustic control authority are identified during manufacturing and finite element modeling. of the actuator. These improved smart foam actuators are employed as an active/passive liner to suppress the transverse propagating acoustic modes within an anechoically-terminated rectangular duct. A section of a duct wall is lined with an array of smart foam and the sound downstream of the control actuators is minimized at several error microphones. Successful harmonic and broadband noise control is achieved. A full-scale numerical model of the duct acoustic control application is presented based on the finite element method. The purpose of the model is to study the sensitivity of this active/passive control approach relative to the spatial distribution of control channels and error sensors. A comparison of the numerical and experimental results yields similar trends. / Ph. D.
67

Low Frequency Noise Reduction Using Novel Poro-Elastic Acoustic Metamaterials

Slagle, Adam Christopher 04 June 2014 (has links)
Low frequency noise is a common problem in aircraft and launch vehicles. New technologies must be investigated to reduce this noise while contributing minimal weight to the structure. This thesis investigates passive and active control methods to improve low frequency sound absorption and transmission loss using acoustic metamaterials. The acoustic metamaterials investigated consist of poro-elastic acoustic heterogeneous (HG) metamaterials and microperforated (MPP) acoustic metamaterials. HG metamaterials consist of poro-elastic material with a periodic arrangement of embedded masses acting as an array of mass-spring- damper systems. MPP acoustic metamaterials consist of periodic layers of micro-porous panels embedded in poro-elastic material. This thesis examines analytically, experimentally, and numerically the behavior of acoustic metamaterials compared to a baseline poro-elastic sample. The development of numerical techniques using finite element analysis will aid in understanding the physics behind their functionality and will influence their design. Design studies are performed to understand the effects of varying the density, size, shape, and placement of the embedded masses as well as the location and distribution of microperforated panels in poro- elastic material. An active HG metamaterial is investigated, consisting of an array of active masses embedded within poro-elastic material. Successful tonal and broadband noise control is achieved using a feedforward, filtered-x LMS control algorithm to minimize the downstream sound pressure level. Low-frequency absorption and transmission loss is successfully increased in the critical frequency range below 500 Hz. Acoustic metamaterials are compact compared to conventional materials and find applications in controlling low-frequency sound radiation in aircraft and launch vehicles. / Master of Science
68

The Control of Interior Cabin Noise Due to a Turbulent Boundary Layer Noise Excitation Using Smart Foam Elements

Griffin, Jason Robert 02 October 2006 (has links)
In this work, the potential for a smart foam actuator in controlling interior cabin noise due to a turbulent boundary layer excitation has been experimentally demonstrated. A smart foam actuator is a device comprised of sound absorbing foam with an embedded distributed piezoelectric layer (PVDF) designed to operate over a broad range of frequencies. The acoustic foam acts as a passive absorber and targets the high frequency content, while the PVDF serves as the active component and is used to overcome the limitations of the acoustic foam at low frequencies. The fuselage skin of an aircraft was represented by an experimental test panel in an anechoic box mounted to the side of a wind tunnel. The rig was used to simulate turbulent boundary layer noise transmission into and aircraft cabin. An active noise control (ANC) methodology was employed by covering the test panel with the smart foam actuators and driving them to generate a secondary sound field. This secondary sound field, when superimposed with the panel radiation, resulted in a reduction in overall sound in the anechoic box. An adaptive feedforward filtered-x Least-Mean-Squared (LMS) control algorithm was used to drive the smart foam actuators to reduce the sound pressure levels at an array of microphones. Accelerometers measured the response of the test panel and were used as the reference signal for the feedforward algorithm. A detailed summary of the smart foam actuator control performance is presented for two separate low speed wind tunnel facilities with speeds of Mach 0.1 and Mach 0.2 and a single high speed tunnel facility operating at Mach 0.8 and Mach 2.5. / Master of Science
69

ANC of UAS Rotor Noise using Virtual Error Sensors

Polen, Melissa Adrienne 12 March 2021 (has links)
Traditional active noise control (ANC) systems rely on a physical sensor to measure the error signal at the desired location of attenuation. The error signal is then used to update an adaptive controller, which ultimately attenuates the measured response. However, it is not always practical to use traditional ANC in real-world applications. For example, as small unmanned aerial systems (UAS) become more commonly used, community noise exposure also increases, along with the desire to reduce UAS noise. Traditional ANC systems that rely on physical sensors at observer locations are impractical, since a UAS does not typically have real-time access to the response at an observer's ears, which is realistically in the far-field. Virtual error sensing (VES) can augment an ANC system using near-field measurements to estimate the response at a desired far-field location. In this way, the VES technique effectively shifts the zone of quiet from the location of the physical sensor(s) to a different "virtual" location. This thesis begins by outlining past work that used traditional ANC methods and virtual error sensing techniques. Numerical modeling results showing the predicted spatial change in SPL achieved using a virtual sensor will be presented. Experimental tests used ANC to attenuate the noise from a single UAS rotor at far-field locations using a near-field microphone and the remote microphone technique (RMT) to develop the VES. The results of the VES alone and with an ANC approach at several far-field virtual locations will be presented and discussed. / Master of Science / Small unmanned aerial systems (sUAS) are becoming increasingly common for private, military, and commercial use, and as such, community noise exposure is increasing. Reducing the noise produced by UAS could help improve community acceptance. Active noise control (ANC) might be used to attenuate noise produced by sUAS, however, traditional ANC systems would require a physical sensor in the far-field, which is not feasible. A virtual error sensor (VES) could eliminate the need for a far-field sensor. This thesis describes the proposed VES strategy, and presents numerical simulations and experimental results that highlight both the benefits and limitations of the approach. Results of the VES system with and without an ANC approach are discussed. Experimental testing focused on attenuating the tonal noise produced by one 2-bladed rotor with a tip radius of 4.7 inches. Pressure variations caused by the blade rotation were measured in the near and far-field using electret microphones and externally polarized condenser microphones, respectively. The ANC system used the filtered-x least mean squares algorithm in conjunction with the VES system to estimate the far-field response. A 2-inch diameter speaker served as the secondary source to provide the appropriate control input to the system. Experimental results show reductions between 6-13 dB at varying far-field locations and rotation rates.
70

A novel approach to multiple reference frequency domain adaptive control

Vaudrey, Michael A. 29 August 2008 (has links)
Adaptive feedforward control of any physical system, acoustical, vibrational or other, requires what is termed as an uncontrollable coherent reference signal. That is, a signal which is highly representative (coherent) of the disturbance to be controlled which is not affected by the control actuator itself. Creating the <i>coherent</i> portion of this requirement for a certain class of problems is the motivation of this work. Most physical disturbances do not originate from a single source, but rather maintain contributions from a number of (possibly) correlated paths. For engineers who have access to only a single-input single-output (SISO) adaptive controller, the multi-source disturbance presents a difficult design issue. Simply adding the references in a linear combination can result in a signal which is not coherent at any frequency. Appropriately amplifying and suppressing coherent and incoherent signals prior to their linear combination can result in a signal which accurately represents the disturbance at all frequencies. This is precisely the task that the newly developed coherent output power (COP) filters perform. By calculating the coherent (or partial coherent) output power of each of the candidate references before control occurs, frequency domain filters are designed to remove incoherent portions of each signal. The advantages of performing the COP filtering procedure are very apparent when compared to the simple linear combination of signals. Coherence, and thus control performance, can be drastically improved. The COP filtering technique offers a means for system identification and computational savings not apparent in the conventional adaptive array, which solves the same multi-source problem. / Master of Science

Page generated in 2.9047 seconds