• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unusual tRNA nucleotidyltransferases: Adaptation of the Romanomermis culicivorax CCA-adding enzyme towards armless tRNAs and characterization of the phosphodiesterase domain of the Escherichia coli CCA-adding enzyme

Philipp, Susanne 11 April 2022 (has links)
tRNAs spielen eine zentrale Rolle in jedem bekannten Organismus. Sie agieren als Adaptoren, um den Code der Nukleinsäuren in eine funktionale Aminosäuresequenz zu übersetzen. Ihre Struktur folgt einer hoch konservierten Kleeblattform, die aus dem D-Arm, dem Anticodonarm und –loop, dem TΨC-Arm und dem Akzeptorstamm gebildet wird. 5ʹ-und 3ʹ-Ende bilden den Akzeptorstamm, wobei das 3ʹ-Ende mit dem Diskriminator und dem universalen CCA-Triplett um vier Nukleotide herausragt. Das CCA-addierende Enzym führt die Addition dieses CCA-Tripletts durch und ist ubiquitär in Bakterien, Archaeen und Eukaryoten vorhanden. Für diese Arbeit wurden zwei ungewöhnliche Mitglieder der CCA-addierenden Enzyme untersucht: das CCA-addierende Enzym aus dem Nematoden Romanomermis culicivorax als auch das bifunktionale CCA-addierende Enzym aus dem Bakterium Escherichia coli. In den Mitochondrien des Nematoden Romanomermis culicivorax sind tRNAs codiert, die von der Kleeblattstruktur abweichen. Es wurden die Anpassungen des CCA-addierenden Enzyms an diesen abweichenden tRNA Pool charakterisiert. Der zweite Teil dieser Arbeit betrachtet eine Phosphodiesterase-Domäne, die HD Domäne, in den CCA-addierenden Enzymen der Gammaproteobakterien. In vitro zeigt diese HD Domäne die Abspaltung eines 2ʹ,3ʹ-cyclischen Phosphates vom 3ʹ-Ende von tRNA Strukturen. Weiterhin wurde in in vivo Experimenten die Funktion der HD Domäne des CCA-addierenden Enzyms aus Escherichia coli betrachtet. Dabei wurde beobachtet, dass in Escherichia coli der RNA-Pool mit 2ʹ,3ʹ-cyclischen Phosphaten dynamisch auf Nährstoffmangel reagiert. Insbesondere der tRNA-Pool und deren Fragmente zeigten interessante Veränderungen, wenn Escherichia coli hohe Zelldichten erreichte oder von einem nährstoffreichen Medium auf Minimalmedium versetzt wurde.
2

Adaptation of the Romanomermis culicivorax CCA-Adding Enzyme to Miniaturized Armless tRNA Substrates

Hennig, Oliver, Philipp, Susanne, Bonin, Sonja, Rollet, Kévin, Kolberg, Tim, Jühling, Tina, Betat, Heike, Sauter, Claude, Mörl, Mario 10 January 2024 (has links)
The mitochondrial genome of the nematode Romanomermis culicivorax encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the Romanomermis enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that—when inserted into the human enzyme—confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 30 -end of the tRNA primer in the catalytic core, dramatically increases the enzyme’s substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.
3

Genotyping bacterial and fungal pathogens using sequence variation in the gene for the CCA-adding enzyme

Franz, Paul, Betat, Heike, Mörl, Mario 15 June 2016 (has links) (PDF)
Background: To allow an immediate treatment of an infection with suitable antibiotics and bactericides or fungicides, there is an urgent need for fast and precise identification of the causative human pathogens. Methods based on DNA sequence comparison like 16S rRNA analysis have become standard tools for pathogen verification. However, the distinction of closely related organisms remains a challenging task. To overcome such limitations, we identified a new genomic target sequence located in the single copy gene for tRNA nucleotidyltransferase fulfilling the requirements for a ubiquitous, yet highly specific DNA marker. In the present study, we demonstrate that this sequence marker has a higher discriminating potential than commonly used genotyping markers in pro- as well as eukaryotes, underscoring its applicability as an excellent diagnostic tool in infectology. Results: Based on phylogenetic analyses, a region within the gene for tRNA nucleotidyltransferase (CCA-adding enzyme) was identified as highly heterogeneous. As prominent examples for pro- and eukaryotic pathogens, several Vibrio and Aspergillus species were used for genotyping and identification in a multiplex PCR approach followed by gel electrophoresis and fluorescence-based product detection. Compared to rRNA analysis, the selected gene region of the tRNA nucleotidyltransferase revealed a seven to 30-fold higher distinction potential between closely related Vibrio or Aspergillus species, respectively. The obtained data exhibit a superb genome specificity in the diagnostic analysis. Even in the presence of a 1,000-fold excess of human genomic DNA, no unspecific amplicons were produced. Conclusions: These results indicate that a relatively short segment of the coding region for tRNA nucleotidyltransferase has a higher discriminatory potential than most established diagnostic DNA markers. Besides identifying microbial pathogens in infections, further possible applications of this new marker are food hygiene controls or metagenome analyses.
4

ARNt "manchots" : structure, fonctionnalité et évolution / Structure, function and evolution of armless mitochondrial tRNAs

Jühling, Tina 14 December 2016 (has links)
Les ARNt sont des molécules adaptatrices reliant l'information génétique de l’ARN messagers à la séquence d'acides aminés primaire des protéines. Les ARNt ont une structure typique, appelée "feuille de trèfle". Certains ARNt mitochondriaux montrent une forte dérivation de cette structure. Un cas extrême peut être observé dans les mitochondries du nématode R. culicivorax. Cette étude vise la caractérisation fonctionnelle de ces ARNt «bizarres» et de définir leurs propriétés structurales et leur fonctionnalité avec des protéines partenaires telles que les CCAses et les aminoacyl-ARNt synthetases. Ce travail révèle que les ARNt sans bras forment une structure secondaire en forme d'épingle à cheveux et que leurs structures 3D présentent une grande flexibilité intrinsèque. Les tests initiaux n’ont pas démontré l'activité d'aminoacylation. Cependant, les ARNt sans bras représentent des molécules fonctionnelles pour le CCAse, indiquant des adaptations de l’enzyme aux ARNt sans bras. / TRNAs are adapter molecules linking the genetic information of messenger RNAs with the primary amino acid sequence of proteins. tRNAs have a typical cloverleaf-like secondary structure. Some mitochondrial tRNAs show a high derivation from this canonical tRNA structure. An extreme case of structural truncations can be observed in mitochondria of the nematode R. culicivorax. This study aims the functional characterization of such “bizarre” tRNAs in defining their structural properties and their functionality with interacting partner proteins such as CCA-adding enzymes and aminoacyl-tRNA synthetases. This work reveals that armless tRNAs form a hairpin-shaped secondary structure. 3D structures exhibit a high intrinsic flexibility. Initial tests could not demonstrate aminoacylation activity. However, armless tRNAs represent functional molecules for CCA-incorporation, indicating adaptations of CCA-adding enzymes to armless tRNAs.
5

Genotyping bacterial and fungal pathogens using sequence variation in the gene for the CCA-adding enzyme

Franz, Paul, Betat, Heike, Mörl, Mario January 2016 (has links)
Background: To allow an immediate treatment of an infection with suitable antibiotics and bactericides or fungicides, there is an urgent need for fast and precise identification of the causative human pathogens. Methods based on DNA sequence comparison like 16S rRNA analysis have become standard tools for pathogen verification. However, the distinction of closely related organisms remains a challenging task. To overcome such limitations, we identified a new genomic target sequence located in the single copy gene for tRNA nucleotidyltransferase fulfilling the requirements for a ubiquitous, yet highly specific DNA marker. In the present study, we demonstrate that this sequence marker has a higher discriminating potential than commonly used genotyping markers in pro- as well as eukaryotes, underscoring its applicability as an excellent diagnostic tool in infectology. Results: Based on phylogenetic analyses, a region within the gene for tRNA nucleotidyltransferase (CCA-adding enzyme) was identified as highly heterogeneous. As prominent examples for pro- and eukaryotic pathogens, several Vibrio and Aspergillus species were used for genotyping and identification in a multiplex PCR approach followed by gel electrophoresis and fluorescence-based product detection. Compared to rRNA analysis, the selected gene region of the tRNA nucleotidyltransferase revealed a seven to 30-fold higher distinction potential between closely related Vibrio or Aspergillus species, respectively. The obtained data exhibit a superb genome specificity in the diagnostic analysis. Even in the presence of a 1,000-fold excess of human genomic DNA, no unspecific amplicons were produced. Conclusions: These results indicate that a relatively short segment of the coding region for tRNA nucleotidyltransferase has a higher discriminatory potential than most established diagnostic DNA markers. Besides identifying microbial pathogens in infections, further possible applications of this new marker are food hygiene controls or metagenome analyses.

Page generated in 0.0761 seconds