• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 60
  • 48
  • 24
  • 18
  • 17
  • 17
  • 16
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Estimation of driver awareness of pedestrian for an augmented reality advanced driving assistance system / Estimation de l’inattention du conducteur vis-à-vis d’un piéton pour un système d’aide à la conduite avancé utilisant la réalité augmentée

Phan, Minh Tien 27 June 2016 (has links)
La réalité augmentée (Augmented Reality ou AR) peut potentiellement changer significativement l’expérience utilisateur. Au contraire les applications sur Smartphone ou tablette, les technologies d’affichage tête haute (Head Up Display ouHUD) aujourd’hui sont capables de projeter localement sur une zone du pare-brise ou globalement sur tout le pare-brise. Le conducteur peut alors percevoir l’information directement dans son champ de vision. Ce ne sont pas que les informations basiques comme vitesse ou navigation, le système peut aussi afficher des aides, des indicateurs qui guident l’attention du conducteur vers les dangers possibles. Il existe alors un chalenge scientifique qui est de concevoir des visualisations d’interactions qui s’adaptent en fonction de l’observation de la scène mais aussi en fonction de l’observation du conducteur. Dans le contexte des systèmes d’alerte de collision avec les piétons (Pedestrian Collision Warning System ou PCWS), l’efficacité de la détection du piéton a atteint un niveau élevé grâce à la technologie de vision. Pourtant, les systèmes d’alerte ne s’adaptent pas au conducteur et à la situation, ils deviennent alors une source de distraction et sont souvent négligés par le conducteur. Pour ces raisons, ce travail de thèse consiste à proposer un nouveau concept de PCWS avec l’AR (nommé the AR-PCW system). Premièrement, nous nous concentrons sur l’étude de la conscience de la situation (Situation Awareness ou SA) du conducteur lorsqu’il y a un piéton présent devant le véhicule. Nous proposons une approche expérimentale pour collecter les données qui représentent l’attention du conducteur vis-à-vis du piéton (Driver Awareness of Pedestrian ou DAP) et l’inattention du conducteur vis-à-vis de celui-ci (Driver Unawareness of Pedestrian ou DUP). Ensuite, les algorithmes basées sur les charactéristiques, les modèles d’apprentissage basés sur les modèles discriminants (ex, Support Vector Machine ou SVM) ou génératifs (Hidden Markov Model ou HMM) sont proposés pour estimer le DUP et le DAP. La décision de notre AR-PCW system est effectivement basée sur ce modèle. Deuxièmement, nous proposons les aides ARs pour améliorer le DAP après une étude de l’état de l’art sur les ARs dans le contexte de la conduite automobile. La boite englobante autour du piéton et le panneau d’alerte de danger sont utilisés. Finalement, nous étudions expérimentalement notre système AR-PCW en analysant les effets des aides AR sur le conducteur. Un simulateur de conduite est utilisé et la simulation d’une zone HUD dans la scène virtuelle sont proposés. Vingt-cinq conducteurs de 2 ans de permis de conduite ont participé à l’expérimentation. Les situations ambigües sont créées dans le scénario de conduite afin d’analyser le DAP. Le conducteur doit suivre un véhicule et les piétons apparaissent à différents moments. L’effet des aides AR sur le conducteur est analysé à travers ses performances à réaliser la tâche de poursuite et ses réactions qui engendrent le DAP. Les résultats objectifs et subjectifs montrent que les aides AR sont capables d’améliorer le DAP défini en trois niveaux : perception, vigilance et anticipation. Ce travail de thèse a été financé sur une bourse ministère et a été réalisé dans le cadre des projets FUI18 SERA et Labex MS2T qui sont financé par le Gouvernement Français, à travers le programme « Investissement pour l’avenir » géré par le ANR (Référence ANR-11-IDEX-0004-02). / Augmented reality (AR) can potentially change the driver’s user experience in significant ways. In contrast of the AR applications on smart phones or tablets, the Head-Up-Displays (HUD) technology based on a part or all wind-shield project information directly into the field of vision, so the driver does not have to look down at the instrument which maybe causes to the time-critical event misses. Until now, the HUD designers try to show not only basic information such as speed and navigation commands but also the aids and the annotations that help the driver to see potential dangers. However, what should be displayed and when it has to be displayed are still always the questions in critical driving context. In another context, the pedestrian safety becomes a serious society problem when half of traffic accidents around the world are among pedestrians and cyclists. Several advanced Pedestrian Collision Warning Systems (PCWS) have been proposed to detect pedestrians using the on-board sensors and to inform the driver of their presences. However, most of these systems do not adapt to the driver’s state and can become extremely distracting and annoying when they detect pedestrian. For those reasons, this thesis focuses on proposing a new concept for the PCWS using AR (so called the AR-PCW system). Firstly, for the «When» question, the display decision has to take into account the driver’s states and the critical situations. Therefore, we investigate the modelisation of the driver’s awareness of a pedestrian (DAP) and the driver’s unawareness of a pedestrian (DUP). In order to do that, an experimental approach is proposed to observe and to collect the driving data that present the DAP and the DUP. Then, the feature-based algorithms, the data-driven models based on the discriminative models (e.g. Support Vector Machine) or the generative models (e.g. Hidden Markov Model) are proposed to recognize the DAP and the DUP. Secondly, for the «What» question, our proposition is inspired by the state-of-the-art on the AR in the driving context. The dynamic bounding-box surrounding the pedestrian and the static danger panel are used as the visual aids. Finally, in this thesis, we study experimentally the benefits and the costs of the proposed AR-PCW system and the effects of the aids on the driver. A fixed-based driving simulator is used. A limited display zone on screen is proposed to simulate the HUD. Twenty five healthy middle-aged licensed drivers in ambiguous driving scenarios are explored. Indeed, the heading-car following is used as the main driving task whereas twenty three pedestrians appear in the circuit at different moment and with different behaviors. The car-follow task performance and the awareness of pedestrian are then accessed through the driver actions. The objective results as well as the subjective results show that the visual aids can enhance the driver’s awareness of a pedestrian which is defined with three levels: perception, vigilance and anticipation. This work has been funded by a Ministry scholarship and was carried out in the framework of the FUI18 SERA project, and the Labex MS2T which is funded by the French Government, through the program ”Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).
42

Méthodes conjointes de détection et suivi basé-modèle de cibles distribuées par filtrage non-linéaire dans les données lidar à balayage / Joint detection and model-based tracking methods of extended targets in scanning laser rangefinder data using non-linear filtering techniques

Fortin, Benoît 22 November 2013 (has links)
Dans les systèmes de perception multicapteurs, un point central concerne le suivi d'objets multiples. Dans mes travaux de thèse, le capteur principal est un télémètre laser à balayage qui perçoit des cibles étendues. Le problème desuivi multi-objets se décompose généralement en plusieurs étapes (détection, association et suivi) réalisées de manière séquentielle ou conjointe. Mes travaux ont permis de proposer des alternatives à ces méthodes en adoptant une approche "track-before-detect" sur cibles distribuées qui permet d'éviter la succession des traitements en proposant un cadre global de résolution de ce problème d'estimation. Dans une première partie, nous proposons une méthode de détection travaillant directement en coordonnées naturelles (polaires) qui exploite les propriétés d'invariance géométrique des objets suivis. Cette solution est ensuite intégrée dans le cadre des approches JPDA et PHD de suivi multicibles résolues grâce aux méthodes de Monte-Carlo séquentielles. La seconde partie du manuscrit vise à s'affranchir du détecteur pour proposer une méthode dans laquelle le modèle d'objet est directement intégré au processus de suivi. C'est sur ce point clé que les avancées ont été les plus significatives permettant d'aboutir à une méthode conjointe de détection et de suivi. Un processus d'agrégation a été développé afin de permettre une formalisation des données qui évite tout prétraitement sous-optimal. Nous avons finalement proposé un formalisme général pour les systèmes multicapteurs (multilidar, centrale inertielle, GPS). D'un point de vue applicatif, ces travaux ont été validés dans le domaine du suivi de véhicules pour les systèmes d'aide à la conduite. / In multi-sensor perception systems, an active topic concerns the multiple object tracking methodes. In this work, the main sensor is a scanning laser rangefinder perceiving extended targets. Tracking methods are generally composed of a three-step scheme (detection, association and tracking) which is jointly or sequentially implemented. This work proposes alternative solutions by considering a track-before-detect approach on extended targets. It avoids the classic procedures by proposing a global framework to solve this estimation problem. Firstly, we propose a detection method dealing with measurements in natural coordinates (polar) which is founded on geometrical invariance properties of the tracked objects. This solution is then integrated in the JPDA and PHD multi-target tracking frameworks solved with the sequential Monte-Carlo methods. The second part of this thesis aims at avoiding the detection step to propose an approach where the object model is directly embedded in the tracking process. This lets to build a novel joint detection and tracking approach. An aggregation process was developed to construct a measurement modeling avoiding any suboptimal preprocessing. We finally proposed a general framework for multi-sensor systems ( multiple lidar, inertial sensor, GPS). Theses methods were applied in the area of multiple vehicle tracking for the Advanced Driver Assistance Systems.
43

Object detection and classication in outdoor environments for autonomous passenger vehicle navigation based on Data Fusion of Articial Vision System and LiDAR sensor / Detecção e classificação de objetos em ambientes externos para navegação de um veículo de passeio autônomo utilizando fusão de dados de visão artificial e sensor laser

Henry Roncancio Velandia 30 May 2014 (has links)
This research project took part in the SENA project (Autonomous Embedded Navigation System), which was developed at the Mobile Robotics Lab of the Mechatronics Group at the Engineering School of São Carlos, University of São Paulo (EESC - USP) in collaboration with the São Carlos Institute of Physics. Aiming for an autonomous behavior in the prototype vehicle this dissertation focused on deploying some machine learning algorithms to support its perception. These algorithms enabled the vehicle to execute articial-intelligence tasks, such as prediction and memory retrieval for object classication. Even though in autonomous navigation there are several perception, cognition and actuation tasks, this dissertation focused only on perception, which provides the vehicle control system with information about the environment around it. The most basic information to be provided is the existence of objects (obstacles) around the vehicle. In formation about the sort of object it is also provided, i.e., its classication among cars, pedestrians, stakes, the road, as well as the scale of such an object and its position in front of the vehicle. The environmental data was acquired by using a camera and a Velodyne LiDAR. A ceiling analysis of the object detection pipeline was used to simulate the proposed methodology. As a result, this analysis estimated that processing specic regions in the PDF Compressor Pro xii image (i.e., Regions of Interest, or RoIs), where it is more likely to nd an object, would be the best way of improving our recognition system, a process called image normalization. Consequently, experimental results in a data-fusion approach using laser data and images, in which RoIs were found using the LiDAR data, showed that the fusion approach can provide better object detection and classication compared with the use of either camera or LiDAR alone. Deploying a data-fusion classication using RoI method can be executed at 6 Hz and with 100% precision in pedestrians and 92.3% in cars. The fusion also enabled road estimation even when there were shadows and colored road markers in the image. Vision-based classier supported by LiDAR data provided a good solution for multi-scale object detection and even for the non-uniform illumination problem. / Este projeto de pesquisa fez parte do projeto SENA (Sistema Embarcado de Navegação Autônoma), ele foi realizado no Laboratório de Robótica Móvel do Grupo de Mecatrônica da Escola de Engenharia de São Carlos (EESC), em colaboração com o Instituto de Física de São Carlos (IFSC). A grande motivação do projeto SENA é o desenvolvimento de tecnologias assistidas e autônomas que possam atender às necessidades de diferentes tipos de motoristas (inexperientes, idosos, portadores de limitações, etc.). Vislumbra-se que a aplicação em larga escala desse tipo de tecnologia, em um futuro próximo, certamente reduzirá drasticamente a quantidade de pessoas feridas e mortas em acidentes automobilísticos em estradas e em ambientes urbanos. Nesse contexto, este projeto de pesquisa teve como objetivo proporcionar informações relativas ao ambiente ao redor do veículo, ao sistema de controle e de tomada de decisão embarcado no veículo autônomo. As informações mais básicas fornecidas são as posições dos objetos (obstáculos) ao redor do veículo; além disso, informações como o tipo de objeto (ou seja, sua classificação em carros, pedestres, postes e a própria rua mesma), assim como o tamanho deles. Os dados do ambiente são adquiridos através do emprego de uma câmera e um Velodyne LiDAR. Um estudo do tipo ceiling foi usado para simular a metodologia da detecção dos obstáculos. Estima-se que , após realizar o estudo, que analisar regiões especificas da imagem, chamadas de regiões de interesse, onde é mais provável encontrar um obstáculo, é o melhor jeito de melhorar o sistema de reconhecimento. Observou-se na implementação da fusão dos sensores que encontrar regiões de interesse usando LiDAR, e classificá-las usando visão artificial fornece um melhor resultado na hora de compará-lo com os resultados ao usar apenas câmera ou LiDAR. Obteve-se uma classificação com precisão de 100% para pedestres e 92,3% para carros, rodando em uma frequência de 6 Hz. A fusão dos sensores também forneceu um método para estimar a estrada mesmo quando esta tinha sombra ou faixas de cor. Em geral, a classificação baseada em visão artificial e LiDAR mostrou uma solução para detecção de objetos em várias escalas e mesmo para o problema da iluminação não uniforme do ambiente.
44

Conception d’un système d’alerte embarqué basé sur les communications entre véhicules / Conception of an embarked alarm system based on the communications between vehicles

Salameh, Nadeen 04 November 2011 (has links)
Récemment, dans la recherche automobile et dans le domaine des transports intelligents,plusieurs projets intéressants ont été menés afin de diminuer le nombre d’accidents. Lors du développement de ces projets, de nouveaux systèmes d’aide à la conduite ont été proposés,comme les systèmes de prévention de collision, d’aide à la vision de nuit et à la navigation.Ces études ont permis de proposer de nouvelles perspectives telles que les systèmes d’aide à la conduite coopératifs, en utilisant la communication entre les véhicules ou entre les véhicules et l’infrastructure basée sur les réseaux VANETs. Pour évaluer l’impact de systèmes ADAS sur l’amélioration de la sécurité routière et la réaction du conducteur, il est indispensable d’utiliser des outils flexibles et efficaces. Des métriques intéressantes sont ainsi proposées dans le but de tester la performance de ces systèmes. La plateforme LaRA qui est équipée de plusieurs capteurs et d’un système d’acquisition en temps réel nous a fourni une base de données réelles de position et de vitesse. Ces données sont traitées et analysées afin de calculer les métriques de performances tels que : la distance entre véhicules et le temps à collision. Nous avons proposé dans cette thèse une nouvelle méthodologie de développement pour le prototypage de systèmes ADAS. Cette méthodologie dédiée aux systèmes ADAS coopératifs, combine les données de plusieurs modules tels que : le module de vision, le module de communication V2V et le module de géo-localisation GPS. Un des problèmes majeurs des systèmes ADAS communicants concerne la qualité et la robustesse de la communication. Elle est fonction d’un grand nombre de paramètres qu’il faut modéliser pour pouvoir évaluer la fiabilité du système d’aide à la conduite.Nous proposons ainsi, un système de prototypage basé sur le principe de la réalité augmentée,dans lequel nous pouvons rejouer des données réelles et modifier des paramètres de l’environnement de communication. Nous avons mis en œuvre notre méthodologie avec la réalisation d’un système d’alerte coopératif entre les véhicules. Les données du système de géolocalisation GPS et les protocoles de routage ont été des éléments primordiaux pour la simulation du modèleV2V sous le simulateur ns-2. L’étape de la simulation du protocole avec les données réelles a été suivie par l’intégration des résultats de simulations dans le nouveau prototype développé sous RTMaps. La mise en œuvre du système d’alerte a permis d’estimer le nombre de pré-collisions détectées dans les deux situations réelle et simulée. L’écart entre ces deux dernières a été étudié et analysé pour plusieurs scénarios qui correspondent aux différentes situations routières. / During the last recent years, ADAS systems such as collision warning, tracking, night vision and navigation systems have been developed. The development of these systems has witness eda growing importance, as they are expected to help improving both road safety and traffic efficiency. More over, they have an ability to enhance the communication between the road infrastructure and the vehicle or between vehicles for safer and efficient transportation services such as : embedded advance collision, collision avoidance and automatic control. In addition,given the rapidly increasing interest in wireless communications, cooperative ADAS define anew framework of autonomous inter vehicular communication which operates on the assumption that such vehicles consist of a multitude of coordinated advanced sensory technologies.Sensors acquire real-time data about road conditions to help the driver respond effectively by sending appropriate messages between vehicles. In addition, these data help to assess the performance of ADAS in the context of improving driver behavior. It is necessary to set some main metrics such as inter-vehicle distance, driver reaction time and time to collision. The messages are transmitted to drivers using vehicular Ad-hoc networks (VANETs) which are a specific type of Mobile Ad-hoc Networks hold the promise to contribute to safe and more efficient roadways.In this thesis we proposed a new methodology of development to prototype ADAS. This methodology dedicated to cooperative ADAS drove us to implement a new simulated frameworkof prototyping system. This framework combines the data from three models : Geo-localizationGPS, vision and V2V communication towards an application of anti-collision warning system. A major problem in communicating ADAS systems is the quality and robustness of the communication.It depends on a large number of parameters that must be modeled to assess there liability of these systems. We developed a new prototyping system based on the principle ofaugmenting the reality in which we can replay actual data and change settings of communication environment. The GPS data and routing protocols were crucial elements for V2V model simulation into ns-2 simulator. We have performed real tests on the experimental prototyping platform LaRA. Multiple results are presented to show up the constancy of the method and the performance efficiency of real-time multi sensors in an integrated framework for collision avoidance applications. Results of this research have shown that IVCs simulations system provides enhanced data for the verification of features of new ADAS. The results of routing protocols simulation with real-time location data are integrated in the new developed prototype. The implementation of the system warning was used to estimate the number of pre-collisions detected in both real and simulated situations. The difference between these two situations was studied and analyzed for several scenarios corresponding to different road situations.
45

Preparation for lane change manoeuvres: Behavioural indicators and underlying cognitive processes

Henning, Matthias 10 February 2010 (has links)
Die vorliegende Arbeit widmet sich der Erforschung der Fahrer-Fahrzeug-Interaktion mit dem Ziel der Fahrerabsichtserkennung bei Spurwechselmanövern. Diese Fahrmanöver sind mit einer überproportionalen Unfallhäufigkeit verbunden, die sich in den Unfallstatistiken widerspiegelt. Laut Statistischem Bundesamt (2008) kamen im Jahr 2007 12,0% (1857) aller Unfälle mit schwerem Sachschaden auf Autobahnen in Deutschland aufgrund von Zusammenstößen mit seitlich in die gleiche Richtung fahrenden Fahrzeugen zustande (S. 65). Mit Hilfe der Information über einen intendierten Spurwechsel kann ein System an das zukünftige Fahrerverhalten angepasst werden, um so die Funktionalität und damit das Sicherheitspotential des Gesamtsystems zu erhöhen. Zusätzlich können mit dieser Information auch unerwünschte Systemeingriffe unterdrückt werden, die den Fahrer stören und so zu einer Minderung der Akzeptanz des jeweiligen Fahrerassistenz- und Informationssystems führen könnten. So kann einerseits ein Assistenzsystem eingeschaltet werden, das den Spurwechsel erleichtert (z.B. Side Blind Zone Alert, Kiefer & Hankey, 2008). Zum anderen kann ein Assistenzsystem abgeschaltet werden, das den Fahrer irrtümlich warnen würde, wie zum Beispiel ein Spurverlassenswarner im Falle eines beabsichtigten Überfahrens der Fahrspur (Henning, Beyreuther et al., 2007). In diesem Zusammenhang bilden drei Untersuchungen das Herzstück der vorliegenden Arbeit. In einer Feldstudie untersuchten Henning, Georgeon, Dapzol und Krems (2009) Indikatoren, die auf die Vorbereitung eines Spurwechsels hindeuten und fanden dabei vor allem Blickverhalten in den linken Außenspiegel als einen geeigneten und sehr frühen Indikator. Dieser dient wahrscheinlich vor allem dem Aufbau einer mentalen Repräsentation des rückwärtigen Verkehrs. In einer anschließenden Fahrsimulatorstudie wurde experimentell erforscht, wie diese mentale Repräsentation beschaffen ist und in welchen Komponenten des Arbeitsgedächtnisses sie gespeichert wird (Henning, Beyreuther, & Krems, 2009). In einer dritten Studie, bestehend aus zwei Laborexperimenten, wurde nach einer Schwelle für den Übergang von einer statischen in eine dynamische mentale Repräsentation sich nähernder Fahrzeuge mit Hilfe des Paradigmas des Representational Momentum (Freyd & Finke, 1984) gesucht und ebenfalls deren Lokalisation im Arbeitsgedächtnis erforscht (Henning & Krems, 2009). Die den drei Manuskripten vorangestellte Einleitung dient der allgemeinen Einführung in das Thema und der Einordnung der Befunde. Dabei wird zuerst der Spurwechselprozess dargestellt, gefolgt von einer Diskussion der zugrundeliegenden kognitiven Prozesse und einem Exkurs über die Möglichkeiten der Spurwechselabsichtserkennung und deren Verbesserung im Lichte der Befunde.
46

Handoff of Advanced Driver Assistance Systems (ADAS) using a Driver-in-the-Loop Simulator and Model Predictive Control (MPC)

Wilkerson, Jaxon 01 December 2020 (has links)
No description available.
47

Nutzerakzeptanz von Aktiven Gefahrenbremsungen bei statischen Zielen: Nutzerakzeptanz von Aktiven Gefahrenbremsungen beistatischen Zielen

Jentsch, Martin, Lindner, Philipp, Spanner-Ulmer, Birgit, Wanielik, Gerd, Krems, Josef F. 05 August 2014 (has links)
Durch das I-FAS der TU Chemnitz wurde im Rahmen des AKTIV-Projektes eine Probandenstudie zur Akzeptanz von Systemausprägungen einer Aktiven Gefahrenbremsung (AGB) bei PKW durchgeführt. Unter Verwendung eines stehenden Hindernisses wurden sechs Systemausprägungen verglichen, die von den AGB-Partnern in zwei Versuchsträger implementiert wurden. Die sechs Systemausprägungen werden nahezu identisch bewertet, solange Probanden keine Vergleichsmöglichkeit zu anderen Systemausprägungen haben. Wenn es zu einem Fahrereingriff kommt, ist der Eingriffszeitpunkt des Fahrers unabhängig von der gefahrenen Systemausprägung.
48

Deep Learning for Sensor Fusion

Howard, Shaun Michael 30 August 2017 (has links)
No description available.
49

Reduced Fuel Emissions through Connected Vehicles and Truck Platooning

Brummitt, Paul D 01 August 2022 (has links)
Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag across the convoy—could eliminate 37.9 million metric tons of CO2 emissions between 2022 and 2026.
50

Προηγμένα συστήματα υποβοήθησης οδηγού με μεθόδους υπολογιστικής όρασης / Advanced driver assistance systems with computer vision methods

Σιόγκας, Γιώργος 27 January 2014 (has links)
Τα αυτοκινητιστικά δυστυχήματα αποτελούν μια από τις κυριότερες αιτίες θανάτου παγκοσμίως. Ο αυξανόμενος αριθμός τους οδήγησε στην συνειδητοποίηση ότι η χρήση προηγμένης τεχνολογίας για την κατασκευή ασφαλέστερων οχημάτων είναι απαραίτητη για την μείωση των ατυχημάτων και κατά συνέπεια των θανάτων που οφείλονται σε αυτά. Από τη στιγμή που οι τεχνολογικές εξελίξεις επέτρεψαν την ενσωμάτωση φθηνών, χαμηλής κατανάλωσης συστημάτων με μεγάλη επεξεργαστική ταχύτητα σε οχήματα, κατέστη προφανές ότι περίπλοκες τεχνικές υπολογιστικής όρασης μπορούσαν πλέον να χρησιμοποιηθούν για την υποβοήθηση της οδήγησης. Σε αυτή την κατεύθυνση, η παρούσα διατριβή εστιάζει στην ανάπτυξη καινοτόμων λύσεων για διαφορετικά κομμάτια που εμπλέκονται στα προηγμένα συστήματα υποβοήθησης του οδηγού. Πιο συγκεκριμένα, σε αυτή την διατριβή προτείνονται καινοτόμα υποσυστήματα για την αναγνώριση σημάτων οδικής κυκλοφορίας, την αναγνώριση φωτεινών σηματοδοτών, τον εντοπισμό προπορευόμενου οχήματος και τον εντοπισμό δρόμου. Οι τεχνικές που χρησιμοποιήθηκαν για την ανάπτυξη των προτεινόμενων λύσεων βασίζονται στην χρωματική επεξεργασία εικόνας με έμφαση στην ανεξαρτησία από την φωτεινότητα της σκηνής, στην χρήση πληροφορίας συμμετρίας για τον εντοπισμό χαρακτηριστικών αντικειμένων (όπως σήματα οδικής κυκλοφορίας, φωτεινοί σηματοδότες και οχήματα), στην χώρο-χρονική παρακολούθηση των εντοπισμένων αντικειμένων και στην αυτόματη κατάτμηση εικόνας για τον εντοπισμό δρόμου. Τα προτεινόμενα συστήματα αναπτύχθηκαν με στόχο την ανθεκτικότητα σε αλλαγές της φωτεινότητας ή τις καιρικές συνθήκες, καθώς και στην οδήγηση σε απαιτητικά περιβάλλοντα. Επίσης, έχει δοθεί ιδιαίτερη έμφαση στην προοπτική υλοποίησης συστημάτων πραγματικού χρόνου. Τα αποτελέσματα που παρουσιάζονται σε αυτή την διατριβή αποδεικνύουν την ανωτερότητα των προτεινόμενων μεθόδων έναντι αντίστοιχων της σχετικής βιβλιογραφίας, ειδικά στις περιπτώσεις του εντοπισμού προπορευόμενου οχήματος και του εντοπισμού δρόμου. Ελπίζουμε ότι μέρη της έρευνας αυτής θα εμπνεύσουν νέες προσεγγίσεις για τις μελλοντικές υλοποιήσεις αντίστοιχων συστημάτων. / Traffic accidents are one of the main reasons for the loss of human lives worldwide. Their increasing number has led to the realization that the use of advanced technology for manufacturing safer vehicles is imperative for limiting casualties. Since technological breakthroughs allowed the incorporation of cheap, low consumption systems with high processing speeds in vehicles, it became apparent that complex computer vision techniques could be used to assist drivers in navigating their vehicles. In this direction, this thesis focuses on providing novel solutions for different tasks involved in advanced driver assistance systems. More specifically, this thesis proposes novel sub-systems for traffic sign recognition, traffic light recognition, preceding vehicle detection and road detection. The techniques used for developing the proposed solutions are based on color image processing with a focus on illumination invariance, using symmetry information for man-made objects (like traffic signs, traffic lights and vehicles) detection, spatiotemporal tracking of detected results and automated image segmentation for road detection. The proposed systems were implemented with a goal of robustness to changes of illumination and weather conditions, as well as to diverse driving environments. A special focus on the prospect for real-time implementation has also been given. The results presented in this thesis indicate the superiority of the proposed methods to their counterparts found in relevant literature in both normal and challenging conditions, especially in the cases of preceding vehicle detection and road detection. Hopefully, parts of this research will provide new insights for future developments in the field of intelligent transportation.

Page generated in 0.1248 seconds