• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 16
  • 15
  • 15
  • 14
  • 12
  • 10
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelagem da concentração de dióxido de enxofre na região de Candiota - RS utilizando o modelo AERMOD

Rosa, Alessandra Faedrich Martins January 2012 (has links)
As perspectivas de expansão da produção de energia transformam a região de Candiota em um cenário propício para o estudo da poluição atmosférica. A importância deste assunto tornou-se evidente com o aumento das emissões de poluentes causado pelo crescimento das áreas urbana e industrial. Com a ampliação do Complexo Termelétrico, construção de Candiota III, e, principalmente, por estar previsto a instalação de novas indústrias nesta região, este estudo tem como foco principal avaliar o impacto deste crescimento industrial na qualidade do ar. A metodologia para o desenvolvimento deste trabalho dispõe como principal ferramenta um modelo matemático de dispersão, AERMOD, representando analiticamente o comportamento do poluente, dióxido de enxofre, durante o processo de dispersão no ar, levando em conta as características das fontes de emissão, da topografia da área de estudo e das condições meteorológicas de dispersão. Através da modelagem numérica, foram comparados os dados de concentrações preditos pelo modelo com os dados observados provenientes de estações meteorológicas localizadas no entorno da Usina Termelétrica Presidente Médice, para campanhas anteriores e posteriores à operação de Candiota III. A análise dos resultados foi feita com auxílio de índices estatísticos recomendados na literatura científica para a avaliação de modelos de qualidade do ar. A utilização do modelo AERMOD para uma avaliação preliminar do impacto causado pela operação de Candiota III mostrou-se eficiente. Levando-se em consideração todas as restrições incorporadas aos modelos gaussianos, o modelo apresentou uma tendência de subestimar os valores observados. A utilização de novas tecnologias indicou que ocorrera um aumento da eficiência nos processos de combustão bem como de dessulfurização em virtude de se constatar, através dos resultados obtidos para as concentrações máximas diárias, uma diminuição na emissão de dióxido de enxofre para a atmosfera. Os resultados das concentrações máximas diárias de dióxido de enxofre para o cenário anterior a operação de Candiota III (2003) foram superiores aos simulados para o período posterior (2011). Com uma confiabilidade de 90 e 80%, respectivamente, para os cenários em que as concentrações máximas e médias 24hs foram simuladas e confrontadas com as observadas nos receptores, os resultados obtidos reforçam que as concentrações calculadas pelo modelo de dispersão, apresentam uma concordância satisfatória com os dados observados. / The perspectives for expansion of energy production transform the region of Candiota in a favorable scenario for the study of air pollution. The importance of this issue has become evident with the increase in pollutant emissions caused by the growth of urban and industrial areas. With the expansion of Thermoelectric Complex, construction of Candiota III, and especially for the up-coming establishment of new industries in this region, this study aims to evaluate the impact of industrial growth on air quality. The methodology for the development of this work has as main tool the dispersion of a mathematical model, AERMOD, analytically representing the behavior of the pollutant, sulfur dioxide, during the process air dispersion, taking into account the characteristics of the emission sources, the topography of the study area and meteorological dispersion conditions. Through numerical modeling, it was compared the data of the concentrations predicted by the model with the observed data from meteorological stations located around the Thermoelectric Power Plant “Presidente Médice” for this experimental campaigns before and after the operation Candiota III. The analysis of the results was performed with the aid of statistical indexes recommended in the scientific literature for evaluation of models of air quality. The use of the AERMOD for a preliminary assessment of the impact caused by the operation of Candiota III was efficient. Taking into account all the restrictions of the Gaussian models, the model tended to underestimate the observed values. The use of new technologies indicated that there was an increase in the efficiency of combustion processes and desulfurization due to the results obtained for the maximum daily concentrations, a decrease in the emission of sulfur dioxide into the atmosphere. The results of the maximum daily concentrations of sulfur dioxide to the scenario presented before the operation of Candiota III (2003) were higher than the period after simulated (2011). With a reliability of 90% and 80%, respectively, for scenarios where the peak concentrations and averages 24 hours were simulated and compared with those observed in receptors, the results obtained reinforce that the concentrations calculated by the dispersion model, present a satisfactory agreement with the observed data.
12

Modelagem da concentração de dióxido de enxofre na região de Candiota - RS utilizando o modelo AERMOD

Rosa, Alessandra Faedrich Martins January 2012 (has links)
As perspectivas de expansão da produção de energia transformam a região de Candiota em um cenário propício para o estudo da poluição atmosférica. A importância deste assunto tornou-se evidente com o aumento das emissões de poluentes causado pelo crescimento das áreas urbana e industrial. Com a ampliação do Complexo Termelétrico, construção de Candiota III, e, principalmente, por estar previsto a instalação de novas indústrias nesta região, este estudo tem como foco principal avaliar o impacto deste crescimento industrial na qualidade do ar. A metodologia para o desenvolvimento deste trabalho dispõe como principal ferramenta um modelo matemático de dispersão, AERMOD, representando analiticamente o comportamento do poluente, dióxido de enxofre, durante o processo de dispersão no ar, levando em conta as características das fontes de emissão, da topografia da área de estudo e das condições meteorológicas de dispersão. Através da modelagem numérica, foram comparados os dados de concentrações preditos pelo modelo com os dados observados provenientes de estações meteorológicas localizadas no entorno da Usina Termelétrica Presidente Médice, para campanhas anteriores e posteriores à operação de Candiota III. A análise dos resultados foi feita com auxílio de índices estatísticos recomendados na literatura científica para a avaliação de modelos de qualidade do ar. A utilização do modelo AERMOD para uma avaliação preliminar do impacto causado pela operação de Candiota III mostrou-se eficiente. Levando-se em consideração todas as restrições incorporadas aos modelos gaussianos, o modelo apresentou uma tendência de subestimar os valores observados. A utilização de novas tecnologias indicou que ocorrera um aumento da eficiência nos processos de combustão bem como de dessulfurização em virtude de se constatar, através dos resultados obtidos para as concentrações máximas diárias, uma diminuição na emissão de dióxido de enxofre para a atmosfera. Os resultados das concentrações máximas diárias de dióxido de enxofre para o cenário anterior a operação de Candiota III (2003) foram superiores aos simulados para o período posterior (2011). Com uma confiabilidade de 90 e 80%, respectivamente, para os cenários em que as concentrações máximas e médias 24hs foram simuladas e confrontadas com as observadas nos receptores, os resultados obtidos reforçam que as concentrações calculadas pelo modelo de dispersão, apresentam uma concordância satisfatória com os dados observados. / The perspectives for expansion of energy production transform the region of Candiota in a favorable scenario for the study of air pollution. The importance of this issue has become evident with the increase in pollutant emissions caused by the growth of urban and industrial areas. With the expansion of Thermoelectric Complex, construction of Candiota III, and especially for the up-coming establishment of new industries in this region, this study aims to evaluate the impact of industrial growth on air quality. The methodology for the development of this work has as main tool the dispersion of a mathematical model, AERMOD, analytically representing the behavior of the pollutant, sulfur dioxide, during the process air dispersion, taking into account the characteristics of the emission sources, the topography of the study area and meteorological dispersion conditions. Through numerical modeling, it was compared the data of the concentrations predicted by the model with the observed data from meteorological stations located around the Thermoelectric Power Plant “Presidente Médice” for this experimental campaigns before and after the operation Candiota III. The analysis of the results was performed with the aid of statistical indexes recommended in the scientific literature for evaluation of models of air quality. The use of the AERMOD for a preliminary assessment of the impact caused by the operation of Candiota III was efficient. Taking into account all the restrictions of the Gaussian models, the model tended to underestimate the observed values. The use of new technologies indicated that there was an increase in the efficiency of combustion processes and desulfurization due to the results obtained for the maximum daily concentrations, a decrease in the emission of sulfur dioxide into the atmosphere. The results of the maximum daily concentrations of sulfur dioxide to the scenario presented before the operation of Candiota III (2003) were higher than the period after simulated (2011). With a reliability of 90% and 80%, respectively, for scenarios where the peak concentrations and averages 24 hours were simulated and compared with those observed in receptors, the results obtained reinforce that the concentrations calculated by the dispersion model, present a satisfactory agreement with the observed data.
13

Modelagem da concentração de dióxido de enxofre na região de Candiota - RS utilizando o modelo AERMOD

Rosa, Alessandra Faedrich Martins January 2012 (has links)
As perspectivas de expansão da produção de energia transformam a região de Candiota em um cenário propício para o estudo da poluição atmosférica. A importância deste assunto tornou-se evidente com o aumento das emissões de poluentes causado pelo crescimento das áreas urbana e industrial. Com a ampliação do Complexo Termelétrico, construção de Candiota III, e, principalmente, por estar previsto a instalação de novas indústrias nesta região, este estudo tem como foco principal avaliar o impacto deste crescimento industrial na qualidade do ar. A metodologia para o desenvolvimento deste trabalho dispõe como principal ferramenta um modelo matemático de dispersão, AERMOD, representando analiticamente o comportamento do poluente, dióxido de enxofre, durante o processo de dispersão no ar, levando em conta as características das fontes de emissão, da topografia da área de estudo e das condições meteorológicas de dispersão. Através da modelagem numérica, foram comparados os dados de concentrações preditos pelo modelo com os dados observados provenientes de estações meteorológicas localizadas no entorno da Usina Termelétrica Presidente Médice, para campanhas anteriores e posteriores à operação de Candiota III. A análise dos resultados foi feita com auxílio de índices estatísticos recomendados na literatura científica para a avaliação de modelos de qualidade do ar. A utilização do modelo AERMOD para uma avaliação preliminar do impacto causado pela operação de Candiota III mostrou-se eficiente. Levando-se em consideração todas as restrições incorporadas aos modelos gaussianos, o modelo apresentou uma tendência de subestimar os valores observados. A utilização de novas tecnologias indicou que ocorrera um aumento da eficiência nos processos de combustão bem como de dessulfurização em virtude de se constatar, através dos resultados obtidos para as concentrações máximas diárias, uma diminuição na emissão de dióxido de enxofre para a atmosfera. Os resultados das concentrações máximas diárias de dióxido de enxofre para o cenário anterior a operação de Candiota III (2003) foram superiores aos simulados para o período posterior (2011). Com uma confiabilidade de 90 e 80%, respectivamente, para os cenários em que as concentrações máximas e médias 24hs foram simuladas e confrontadas com as observadas nos receptores, os resultados obtidos reforçam que as concentrações calculadas pelo modelo de dispersão, apresentam uma concordância satisfatória com os dados observados. / The perspectives for expansion of energy production transform the region of Candiota in a favorable scenario for the study of air pollution. The importance of this issue has become evident with the increase in pollutant emissions caused by the growth of urban and industrial areas. With the expansion of Thermoelectric Complex, construction of Candiota III, and especially for the up-coming establishment of new industries in this region, this study aims to evaluate the impact of industrial growth on air quality. The methodology for the development of this work has as main tool the dispersion of a mathematical model, AERMOD, analytically representing the behavior of the pollutant, sulfur dioxide, during the process air dispersion, taking into account the characteristics of the emission sources, the topography of the study area and meteorological dispersion conditions. Through numerical modeling, it was compared the data of the concentrations predicted by the model with the observed data from meteorological stations located around the Thermoelectric Power Plant “Presidente Médice” for this experimental campaigns before and after the operation Candiota III. The analysis of the results was performed with the aid of statistical indexes recommended in the scientific literature for evaluation of models of air quality. The use of the AERMOD for a preliminary assessment of the impact caused by the operation of Candiota III was efficient. Taking into account all the restrictions of the Gaussian models, the model tended to underestimate the observed values. The use of new technologies indicated that there was an increase in the efficiency of combustion processes and desulfurization due to the results obtained for the maximum daily concentrations, a decrease in the emission of sulfur dioxide into the atmosphere. The results of the maximum daily concentrations of sulfur dioxide to the scenario presented before the operation of Candiota III (2003) were higher than the period after simulated (2011). With a reliability of 90% and 80%, respectively, for scenarios where the peak concentrations and averages 24 hours were simulated and compared with those observed in receptors, the results obtained reinforce that the concentrations calculated by the dispersion model, present a satisfactory agreement with the observed data.
14

Examination of the Performance of AERMOD Model under Different Wind Conditions

Danish, Farzana January 2006 (has links)
No description available.
15

Modeling hydrogen sulfide emissions: are current swine animal feeding operation regulations effective at protecting against hydrogen sulfide exposure in Iowa?

Kleinschmidt, Travis Lee 01 December 2011 (has links)
Confined farm animals generate large amounts of excrement on-site. Many toxic substances emitted from Concentrated Animal Feeding Operations (CAFOs) emanate from that manure including hydrogen sulfide. There is growing concern that these pollutants, including hydrogen sulfide, may lead to adverse health effects among people living close to these operations. Iowa law mandates that separation distances be established from CAFOs to residences, public areas, and public buildings to protect human health. The primary objective of this study was to assess the adequacy of current separation distance requirements established in Iowa to protect for the Health Effects Standard (HES) and Health Effects Value (HEV) of hydrogen sulfide concentrations emanating from swine CAFOs in Iowa. Specifically, the research examined: 1) the characteristics of swine weight dense areas, 2) if current CAFO setback distance regulations in Iowa protect for the HES and HEV of hydrogen sulfide nearest the largest swine weight CAFO, and 3) if current CAFO setback distance regulations in Iowa protect for the HES and HEV of hydrogen sulfide for an area of Iowa which has the greatest swine weight density. The results suggest that the highest swine weight dense areas generally have a greater median and average swine weight per CAFO than is observed for all active swine CAFOs in Iowa. The high swine weight areas are also generally influenced greatly by a few very large swine CAFOs. Additionally, these areas tend to have a high CAFO density but are not located in the highest CAFO dense areas of Iowa. The HEV level of hydrogen sulfide is estimated to be exceeded in a total area of 423,568 m2 beyond the associated separated distance for the largest active swine CAFO alone in 2004. This indicates that the 914.4 m (3,000 ft) separation distance does not protect against the HEV of hydrogen sulfide for the largest swine CAFO in Iowa. The HES of hydrogen sulfide was not exceeded in this area. Additionally, the estimated concentrations of hydrogen sulfide in the highest swine weight dense area did not exceed the HES or HEV beyond the minimum separation distances.
16

Engineering analysis of the air pollution regulatory process impacts on the agricultural industry

Lange, Jennifer Marie 10 October 2008 (has links)
The EPA press release dated February 23, 2004 states that the three Buckeye Egg Farm facilities had the potential to emit more than a combined total of 1850 tons per year of particulate matter (PM). This number was based on flowrate calculations that were three times higher than those measured as well as a failure to include particle size distributions in the emissions calculations. The annual PM emission for each facility was approximately 35 tons per year. The EPA was unjustified in requiring Buckeye Egg Farm to obtain Title V and PSD permits as the facilities could not have met the thresholds for these permits. Engineers need to be concerned with correctly measuring and calculating emission rates in order to enforce the current regulations. Consistency among regulators and regulations includes using the correct emission factors for regulatory permitting purposes. EPA has adopted AERMOD as the preferred dispersion model for regulatory use on the premise that it more accurately models the dispersion of pollutants near the surface of the Earth than ISCST3; therefore, it is inappropriate to use the same emission factor in both ISCST3 and AERMOD in an effort to equitably regulate PM sources. For cattle feedlots in Texas, the ISCST3 emission factor is 7 kg/1000 hd-day (16 lb/1000 hd-day) while the AERMOD emission factor is 5 kg/1000 hd-day (11 lb/1000 he-day). The EPA is considering implementing a crustal exclusion for the PM emitted by agricultural sources. Over the next five years, it will be critical to determine a definition of crustal particulate matter that researchers and regulators can agree upon. It will also be necessary to develop a standard procedure to determine the crustal mass fraction of particulate matter downwind from a source to use in the regulatory process. It is important to develop a procedure to determine the particulate matter mass fraction of crustal downwind from a source before the crustal exclusion can be implemented to ensure that the exclusion is being used correctly and consistently among all regulators. According to my findings, the mass fraction of crustal from cattle feedlot PM emissions in the Texas High Plains region is 52%.
17

Engineering analysis of the air pollution regulatory process impacts on the agricultural industry

Lange, Jennifer Marie 10 October 2008 (has links)
The EPA press release dated February 23, 2004 states that the three Buckeye Egg Farm facilities had the potential to emit more than a combined total of 1850 tons per year of particulate matter (PM). This number was based on flowrate calculations that were three times higher than those measured as well as a failure to include particle size distributions in the emissions calculations. The annual PM emission for each facility was approximately 35 tons per year. The EPA was unjustified in requiring Buckeye Egg Farm to obtain Title V and PSD permits as the facilities could not have met the thresholds for these permits. Engineers need to be concerned with correctly measuring and calculating emission rates in order to enforce the current regulations. Consistency among regulators and regulations includes using the correct emission factors for regulatory permitting purposes. EPA has adopted AERMOD as the preferred dispersion model for regulatory use on the premise that it more accurately models the dispersion of pollutants near the surface of the Earth than ISCST3; therefore, it is inappropriate to use the same emission factor in both ISCST3 and AERMOD in an effort to equitably regulate PM sources. For cattle feedlots in Texas, the ISCST3 emission factor is 7 kg/1000 hd-day (16 lb/1000 hd-day) while the AERMOD emission factor is 5 kg/1000 hd-day (11 lb/1000 he-day). The EPA is considering implementing a crustal exclusion for the PM emitted by agricultural sources. Over the next five years, it will be critical to determine a definition of crustal particulate matter that researchers and regulators can agree upon. It will also be necessary to develop a standard procedure to determine the crustal mass fraction of particulate matter downwind from a source to use in the regulatory process. It is important to develop a procedure to determine the particulate matter mass fraction of crustal downwind from a source before the crustal exclusion can be implemented to ensure that the exclusion is being used correctly and consistently among all regulators. According to my findings, the mass fraction of crustal from cattle feedlot PM emissions in the Texas High Plains region is 52%.
18

An Analysis of the Impacts and Non-Attainment Risks of the Revised Sulfur Dioxide National Ambient Air Quality Standard on the Toledo Core Based Statistical Area Using the American Meteorological Society-Environmental Protection Agency Regulatory Model

January 2011 (has links)
abstract: The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to predict potential problems associated with the newly revised standard. The Toledo CBSA is home to two oil refineries, a glass making industry, several coal fired lime kilns, and a sulfuric acid regeneration plant, The CBSA 3 has coal fired power plants within a 30 mile radius of its center. Additionally, Toledo is a major Great Lakes shipping port visited by both lake and ocean going vessels. As a transportation hub, the area is also traversed by several rail lines which feed four rail switching yards. Impacts of older generation freighters, or "steamers", utilizing high sulfur "Bunker C" fuel oil in the area is also an issue. With the unique challenges presented by an SO2 one hour standard, this study attempted to estimate potential problem areas in advance of any monitoring data being gathered. Based on the publicly available data as inputs, it appears that a significant risk of non-attainment may exist in the Toledo CBSA. However, future on-the-books controls and currently proposed regulatory actions appear to drive the risk below significance by 2015. Any designation as non-attainment should be self-correcting and without need for controls other than those used in these models. The outcomes of this screening study are intended for use as a basis for assessments for other mid-sized, industrial areas without SO2 monitors. The results may also be utilized by industries and planning groups within the Toledo CBSA to address potential issues in advance of monitoring system deployment to lower the risk of attaining long term or perpetual non-attainment status. / Dissertation/Thesis / M.S. Technology 2011
19

Verification Of FAA's Emissions And Dispersion Modeling System (EDMS)

Martin, Anjoli 01 January 2006 (has links)
Air quality has been a major environmental concern for many years. Recently the issue of airport emissions has presented growing concerns and is being studied in much more depth. Airport emissions come from a variety of point, line and area sources, making emissions modeling for airports very complex and more involved. Accurate air quality models, specific to airport needs, are required to properly analyze this complex array of air pollution sources created by airports. Accurate air quality models are needed to plan for increased growth of current airports and address concerns over proposed new ones. The Federal Aviation Administration's (FAA) Emissions and Dispersion Modeling System (EDMS) is a program that is the required model for assessing emissions from airport sources. This research used EDMS Version 4.21, which incorporates the EPA dispersion model AERMOD, to model detailed airport data and compare the model's predicted values to the actual measured carbon monoxide concentrations at 25 locations at a major U.S. airport. Statistics relating the model characteristics as well as trends are presented. In this way, a thorough investigation of the accuracy of the EDMS modeled values of carbon monoxide was possible. EDMS modeling included two scenarios, the first scenario referred to as practice detail included general airport information that a modeler could find from the airport being studied and the second scenario referred to as research detail utilized very detailed information from observer logs during a three day observation period. Each of the modeling scenarios was compared to the field measured data and to each other. These comparisons are important to insure the model is adequately describing emissions sources at airports. Data analysis of this study was disappointing since measured levels of CO were generally higher than modeled values. Since EDMS is continually changing and improving perhaps these results can help enhance future models.
20

Determining Florida Landfill Odor Buffer Distances Using Aermod

Figueroa, Veronica 01 January 2008 (has links)
As U.S. landfills continue to grow in size, concerns about odorous gas emissions from landfills are increasing. For states that are expanding in population, such as Florida, odors from landfills are a major concern because new housing developments, needed to accommodate the rapid population growth, are creeping closer and closer to the existing landfills. As homes get closer to landfills, odor complaints are likely to become more frequent, causing landfill managers increased problems with public interactions. Odor buffer zones around landfills need to be established to give municipalities tools to help prevent the building of future homes too close to landfills. Using the latest air dispersion model, AERMOD, research predicted downwind odor concentrations from a Central Florida landfill. Accurate estimates of methane emissions throughout a Central Florida landfill were determined using a new technique developed as part of this research that uses hundreds of ambient air VOC measurements taken within a landfill, as receptors. Hundreds of point sources were placed on the landfill, and the standard Gaussian dispersion equations were solved by matrix inversion methods. The methane emission rates were then used as surrogates for odor emissions to predict downwind odor concentrations via AERMOD. By determining a critical zone around a landfill with regards to odor, stakeholders will be able to meet regulatory issues and assist their communities. Other beneficial uses from this research include: determination of existing gas collection system efficiencies, calculation of fugitive greenhouse gas emissions from municipal solid waste (MSW) landfills, and improved landfill gas management.

Page generated in 0.0414 seconds