261 |
Experimentální měření aerodynamických silových účinků / Experimental measurements of aerodynamic forcesJob, Štefan January 2012 (has links)
This thesis deals with the effect of the aerodynamic forces on a vehicle. It contains the description of the test run of the vehicle, the proposal on how to process the measurements, the processing of the measurements themselves, and the final assessment of the results as to their accuracy and the possibility of repeating the experiment. Furthermore, this thesis contains the comparison of the effect of the individual aerodynamic features on the race car.
|
262 |
Simulační modelování bezpilotního letounu / Fixed-wing UAV simulation modelingPříleský, Libor January 2014 (has links)
Nowadays number of UAVs is still increasing. If we want to design their autopilot system, we need a simulation model to test and tune our autopilot design. This thesis is about creating such model fo small fixed wing UAV. This thesis contain information how to create the model, which equations to use and what various parameters mean. One of the possibilities is parameter identification from measured data. In later part of this paper is a small research of this topic and implementation of two of them. Virtual model, which is obtained at the end of this work, accomplished its primary goal and was used to initial autopilot design. Implemented identification methods worked as well, but we didn't succeed in upgrading the model parameters due to the defects during the data measurement.
|
263 |
Design kapotáže studentské formule / Bodywork Design of Formula Students CarMalík, Jiří January 2014 (has links)
Diplomová práce pojednává o návrhu kapotáže vozidla Formula Student. Vozy této kategorie se každoročně učástní série mezinárodních závodů všech zůčastněných studentských týmů. Úroveň návrhu se posuzuje jak v dynamických tak ve statických disciplínách. Tato práce popisuje proces návrhu tří koncepčních variant společně s rozpracováním finální varianty pro fázi výroby. Navíc je zde prezentován koncept obsahující aerodynamický paket, který slouží jako výhledová studie možného vývoje vozidla.
|
264 |
Effect of Incorporating Aerodynamic Drag Model on Trajectory Tracking Performance of DJI F330 QuadcopterJanuary 2020 (has links)
abstract: Control algorithm development for quadrotor is usually based solely on rigid body dynamics neglecting aerodynamics. Recent work has demonstrated that such a model is suited only when operating at or near hover conditions and low-speed flight. When operating in confined spaces or during aggressive maneuvers destabilizing forces and moments are induced due to aerodynamic effects. Studies indicate that blade flapping, induced drag, and propeller drag influence forward flight performance while other effects like vortex ring state, ground effect affect vertical flight performance. In this thesis, an offboard data-driven approach is used to derive models for parasitic (bare-airframe) drag and propeller drag. Moreover, thrust and torque coefficients are identified from static bench tests. Among the two, parasitic drag is compensated for in the position controller module in the PX4 firmware. 2-D circular, straight line, and minimum snap rectangular trajectories with corridor constraints are tested exploiting differential flatness property wherein altitude and yaw angle are constant. Flight tests are conducted at ASU Drone Studio and results of tracking performance with default controller and with drag compensated position controller are presented. Root mean squared tracking error in individual axes is used as a metric to evaluate the model performance. Results indicate that, for circular trajectory, the root mean squared error in the x-axis has reduced by 44.54% and in the y-axis by 39.47%. Compensation in turn degrades the tracking in both axis by a maximum under 12% when compared to the default controller for rectangular trajectory case. The x-axis tracking error for the straight-line case has improved by 44.96% with almost no observable change in the y-axis. / Dissertation/Thesis / Real-time Flight Test of Circular Trajectories / Masters Thesis Aerospace Engineering 2020
|
265 |
Development of a Flight Dynamics Modelof a Flying Wing ConfigurationTonti, Jacopo January 2014 (has links)
The subject of UCAV design is an important topic nowadays and many countries have their own programmes. An international group, under the initiative of the NATO RTO AVT-201 Task group, titled “Extended Assessment of Reliable Stability & Control Prediction Methods for NATO Air Vehicles”, is currently performing intensive analysis on a generic UCAV configuration, named SACCON. In this thesis the stability and control characteristics of the SACCON are investigated, with the purpose of carrying out a comprehensive assessment of the flying qualities of the design. The study included the generation of the complete aerodynamic database of the aircraft, on the basis of the experimental data measured during TN2514 and TN2540 campaigns at DNW-NWB low speed wind tunnel. Moreover, system identification techniques were adopted for the extraction of dynamic derivatives from the time histories of forced oscillation runs. The trim of the aircraft was evaluated across the points of a reasonable test envelope, so as to define a set of plausible operative conditions, representing the reference conditions for subsequent linearization of the dynamic model. The study provided a thorough description of the stability and control characteristics and flying qualities of the unaugmented SACCON, laying the groundwork for future improvement and validation of the configuration in the next design stages.
|
266 |
Relationship between Rotor Wake Structures and Performance Characteristics over a Range of Low-Reynolds Number ConditionsSutkowy, Mark Louis, Jr. January 2018 (has links)
No description available.
|
267 |
Aerodynamics of Fan Blade BlendingKnapke, Clint J. 05 September 2019 (has links)
No description available.
|
268 |
Implementation and Evaluation of Machine Learning Assisted Adjoint Sensitivities Applied to Turbomachinery Design OptimizationUgolotti, Matteo 22 October 2020 (has links)
No description available.
|
269 |
Numerical Investigation of Airfoil Self-Noise Generation at Low Reynolds NumberLyas, Tarik 09 December 2016 (has links)
In the advent of increasing the number of operable unmanned aerial systems (UAS) over the next years, a challenge exists in regard to the noise signature that these machines may generate. In this work, we perform advanced computational simulations to study the flow around an airfoil and the associated noise radiating to the near- and farield. The airfoil size and the freestream velocity are representative of a typical UAS. The study is aimed at investigating the characteristics of the aerodynamic noise radiating from an airfoil at various angles of attack, Reynolds number and Mach number. The numerical tool is a high-order compressible Navier-Stokes solver, using Runge-Kutta explicit time integration and dispersion-relation-preserving spatial discretization. Various results in terms of velocity and pressure distribution around the airfoil, and sound pressure level spectra calculated from different probe points located in the near- and farield are compared to each other and discussed.
|
270 |
Forced response numerical investigation of a transonic compressor rotorDias, Mariana Pires Gonçalves Toco January 2023 (has links)
The present thesis discusses the forced response of a rotor’s bladed-disk when excited by the periodic force produced by a wake generator, or Inlet Guide Vane (IGV),with 8 equally-spaced blades. These components are part of an axial transonic compressor rig, moreover the Transonic Compressor Darmstadt 1 (TCD1), located at the Technical University of Darmstadt. The investigation is within the ARIAS (Advanced Research Into Aeromechanical Solutions) project, that aims to improve the predictive capabilities of the design methods used in the aircraft propulsion engine’s industry to study aerodynamically induced blade vibrations. The methodology comprised a set of numerical analyses that were conducted using the software Ansys, addressing both the structural and the aerodynamics sides of the aeroelastic problem, in a co-dependent way. At first, steady-state CFD simulations were conducted to study the mesh convergence and to analyse the operation of the compressor at N80 speed, obtaining its compressor map and its peak efficiency operation point. From these, the aerodynamic static force being applied on theblade was obtained, allowing to determine the pre-stresses of the bladed-disk, orblisk. With a modal analysis, the natural modes of the rotor blisk at N80 speed were obtained and the resonance crossing M2 EO8 was identified, plotting the Campbell and ZZENF diagrams. From the modal displacements of the critical mode, a blade flutter analysis was conducted in order to compute the aerodynamic damping ratio of the rotor blisk. With a transient CFD analysis, the periodic forcing being applied onthe rotor blisk that arises from the IGV wake pattern was determined and exported as Fourier coefficients. Finally, a harmonic simulation was carried out to analyse the forced response of the blisk, introducing both the aerodynamic damping value and the unsteady forcing mapped onto the blade. As a result, the frequency response of both the blade maximum alternating deflections and equivalent stresses was obtained, as well as the respective spatial contour plots at the obtained resonance frequency. Some of the results of the conducted analyses were investigated in order to analyse the aerodynamic phenomena occurring, where it was possible to identify vortex shedding, leading shock, tip-clearance and horse-shoe vortex. Afterwards, the numerical results were compared to the experimental data optained from rig tests conducted at the TCD1 by partners of the ARIAS projects. The numerical model management to predict well the compressor map, thus the steady-state of the flow, as well as the resonance frequency. The aerodynamic damping value was over- predicted when compared to the entire data set. When it came to the harmonic analysis results, the numerical model under-predicted by one order of magnitude the maximum deflection, and the equivalent stress is, as well, far below the experimental results. These results led to conclude that the model is under-predicting the aerodynamix unsteady forcing that results from the wake pattern generated by the IGV and excites the rotor blades.
|
Page generated in 0.0633 seconds