1 |
Pulmonary delivery of brittle matrix powders produced by thin film freezingWang, Yi-Bo 03 March 2015 (has links)
Recently, the portfolio of compounds approved for inhalation therapy has expanded rapidly for lung disease therapies. The rationale for this delivery approach includes a more targeted and localized delivery to the diseased site with reduced systemic exposure, potentially leading to decreased adverse side effects. We have proposed that brittle matrix powders prepared by thin film freezing (TFF) are a suitable platform for pulmonary drug delivery which can achieve high lung concentrations while limit the corresponding systemic levels associated with toxicity, and enhanced physicochemical and aerodynamic properties can be obtained by varying TFF processing parameters. In Chapter 2, the in vitro and in vivo performance of an amorphous formulation prepared by TFF and a crystalline micronized formulation produced by milling was compared for Tacrolimus (TAC). TFF processed matrix powders was capable of achieving deep lung delivery due to its low density, highly porous and brittle characteristics. When emitted from a Miat® monodose inhaler, TFF processed TAC formulations exhibited a fine particle fraction (FPF) of 83.3% and a mass median aerodynamic diameter (MMAD) of 2.26 µm. Single dose 24-h pharmacokinetic studies in rats demonstrated that the TAC formulation prepared by TFF exhibited higher pulmonary bioavailability with a prolonged retention time in the lung, possibly due to decreased clearance (e.g., macrophage phagocytosis), compared to the micronized TAC formulation. Additionally, TFF formulation generated a lower systemic TAC concentration with smaller variability than the micronized formulation following inhalation, potentially leading to reduced side effects related to the drug in systemic circulation. Chapter 3 investigated the impact of processing parameters in the TFF process on the physicochemical and aerodynamic properties of the resulting formulations. All of these enhanced powder properties resulted from higher freezing rate contributed to a better aerodynamic performance of the obtaining formulations. Moreover, a decreasing trend of FPF was observed for these TFF powders when the initial solid concentrations increased. The variation of the freezing rate and initial solid loading in the TFF process enabled the production of formulations with enhanced physicochemical properties and improved aerodynamic performance. / text
|
2 |
Aerodynamic, infrared extinction and tribocharing properties of nanostructured and conventional particlesPjesky, Susana Castro January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Ronaldo G. Maghirang / Nanostructured particles possess unique chemical and physical properties, making them
excellent candidates for air purification, smoke clearing, and obscuration. This research was
conducted to investigate the aerodynamic, charging, and infrared (IR) extinction properties of
nanostructured particles. Specific objectives were to: (1) measure the size distribution and
concentration of aerosolized nanostructured particles; (2) evaluate their IR extinction properties;
(3) determine their relative chargeability; and (4) numerically model their transport in enclosed
rooms.
The size distribution and concentration of two nanostructured particles (NanoActive®
MgO and MgO plus) were measured in an enclosed room. The particles differed in size
distribution and concentration; for example, the geometric mean diameters of NanoActive®
MgO and MgO plus were 3.12 and 11.1 [Mu]m, respectively.
The potential of nanostructured particles as IR obscurants was determined and compared
with other particles. Four groups of particles were considered: nanostructured particles
(NanoActive® MgO plus, MgO, TiO[subscript2]); nanorods (MgO, TiO[subscript2]); conventional particles (NaHCO[subscript3]
and ISO fine test dust); and common obscurants (brass, graphite, carbon black). The extinction
coefficients of the nanostructured particles were generally significantly smaller than those of the
other particles. Graphite flakes had the greatest mass extinction coefficient (3.22 m[superscript2]/g), followed
by carbon black (1.72 m[superscript2]/g), and brass flakes (1.57 m[superscript2]/g). Brass flakes had the greatest volume
extinction coefficient (1.64 m[superscript2]/cc), followed by NaHCO[subscript3] (0.93 m[superscript2]/cc), and ISO fine test dust
(0.91 m[superscript2]/cc).
The relative chargeability of nanostructured particles was also investigated. Selected
particles were passed through a Teflon tribocharger and their net charge-to-mass ratios were
measured. Tribocharging was able to charge the particles; however, the resulting charge was
generally small. NanoActive® TiO[subscript2] gained the highest net charge-to-mass ratio (1.21 mC/kg)
followed by NanoActive® MgO (0.81 mC/kg) and ISO fine test dust (0.66 mC/kg).
The transport of NanoActive® MgO plus and hollow glass spheres in an enclosed room
was simulated by implementing the discrete phase model of FLUENT. In terms of mass
concentrations, there was reasonable agreement between predicted and measured values for
hollow glass spheres but not for NanoActive® MgO plus. In terms of number concentration,
there was large discrepancy between predicted and measured values for both particles.
|
Page generated in 0.0965 seconds