• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 394
  • 94
  • 78
  • 76
  • 73
  • 33
  • 27
  • 15
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 958
  • 150
  • 142
  • 95
  • 92
  • 91
  • 91
  • 90
  • 89
  • 84
  • 77
  • 76
  • 74
  • 73
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Microphysical aerosol properties retrieved from combined lidar and sun photometer measurements

Wagner, Janet 06 December 2012 (has links) (PDF)
To assess information about the optical, microphysical, and radiative properties of aerosol particles the lidar technique and sun photometers are commonly used. Information that result from both lidar and sun photometer data can provide a distinct image of the vertical aerosol properties. The algorithm developed at the Institute of Physics of the National Academy of Science of Belarus (IPNASB) uses lidar measurements at the three wavelengths 355, 532, and 1064 nm and mean backscatter and extinction coefficients retrieved from radiometric data to obtain profiles of fine-mode and coarse-mode concentrations. Within the master thesis the IPNASB algorithm was tested for specific aerosol situations. Three cases are considered representing Saharan dust, smoke and industrial aerosol from East Europe, and volcanic aerosol from the Eyjafjallajokull eruption. The retrieved microphysical aerosol properties are in good to acceptable agreement with findings of well-established methods.
92

Reassessment of satellite-based estimate of aerosol climate forcing

Ma, Xiaoyan, Yu, Fangqun, Quaas, Johannes 21 August 2015 (has links) (PDF)
Large uncertainties exist in estimations of aerosol direct radiative forcing and indirect radiative forcing, and the values derived from globalmodeling differ substantially with satellite-based calculations. Following the approach of Quaas et al. (2008; hereafter named Quaas2008),we reassess satellite-based clear- and cloudy-sky radiative forcings and their seasonal variations by employing updated satellite products from 2004 to 2011 in combination with the anthropogenic aerosol optical depth (AOD) fraction obtained frommodel simulations using the Goddard Earth Observing System-Chemistry-Advanced ParticleMicrophysics (GEOS-Chem-APM). Our derived annual mean aerosol clear-sky forcing (-0.59 W m-2) is lower, while the cloudy-sky forcing (-0.34 W m-2) is higher than the corresponding results (-0.9Wm-2 and -0.2W m-2, respectively) reported in Quaas2008. Our study indicates that the derived forcings are sensitive to the anthropogenic AOD fraction and its spatial distribution but insensitive to the temporal resolution used to obtain the regression coefficients, i.e.,monthly or seasonal based. The forcing efficiency (i.e., the magnitude per anthropogenic AOD) for the clear-sky forcing based on this study is 19.9Wm-2, which is about 5% smaller than Quaas2008’s value of 21.1Wm-2. In contrast, the efficiency for the cloudy-sky forcing of this study (11 W m-2) is more than a factor of 2 larger than Quaas2008’s value of 4.7 W m-2. Uncertainties tests indicate that anthropogenic fraction of AOD strongly affects the computed forcings while using aerosol index instead of AOD from satellite data as aerosol proxy does not appear to cause any significant differences in regression slopes and derived forcings.
93

A search for large-scale effects of ship emissions on clouds and radiation in satellite data

Peters, Karsten, Quaas, Johannes, Graßl, Helmut 21 August 2015 (has links) (PDF)
Ship tracks are regarded as the most obvious manifestations of the effect of anthropogenic aerosol particles on clouds (indirect effect). However, it is not yet fully quantified whether there are climatically relevant effects on large scales beyond the narrow ship tracks visible in selected satellite images. A combination of satellite and reanalysis data is used here to analyze regions in which major shipping lanes cut through otherwise pristine marine environments in subtropical and tropical oceans. We expect the region downwind of a shipping lane is affected by the aerosol produced by shipping emissions but not the one upwind. Thus, differences in microphysical and macrophysical cloud properties are analyzed statistically. We investigate microphysical and macrophysical cloud properties as well as the aerosol optical depth and its fine-mode fraction for the years 2005–2007 as provided for by retrievals of the two Moderate Resolution Imaging Spectroradiometer instruments. Water-cloud properties include cloud optical depth, cloud droplet effective radius, cloud top temperature, and cloud top pressure. Large-scale meteorological parameters are taken from ERA-Interim reanalysis data and microwave remote sensing (sea surface temperature). We analyze the regions of interest in a Eulerian and Lagrangian sense, i.e., sampling along shipping lanes and sampling along wind trajectories, respectively. No statistically significant impacts of shipping emissions on large-scale cloud fields could be found in any of the selected regions close to major shipping lanes. In conclusion, the net indirect effects of aerosols from ship emissions are not large enough to be distinguishable from the natural dynamics controlling cloud presence and formation.
94

CHASER

Rennó, Nilton O., Williams, Earle, Rosenfeld, Daniel, Fischer, David G., Fischer, Jürgen, Kremic, Tibor, Agrawal, Arun, Andreae, Meinrat O., Bierbaum, Rosina, Blakeslee, Richard, Boerner, Anko, Bowles, Neil, Christian, Hugh, Cox, Ann, Dunion, Jason, Horvath, Akos, Huang, Xianglei, Khain, Alexander, Kinne, Stefan, Lemos, Maria C., Penner, Joyce E., Pöschl, Ulrich, Quaas, Johannes, Seran, Elena, Stevens, Bjorn, Walati, Thomas, Wagner, Thomas 26 August 2015 (has links) (PDF)
The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) satellite mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. The CHASER satellite mission was developed to remotely sense quantities necessary for determining the interactions of aerosols with clouds and storms. The links between the Decadal Survey recommendations and the CHASER goals, science objectives, measurements, and instruments are described in Table 1. Measurements by current satellites allow a rough determination of profiles of cloud particle size but not of the activated CCN that seed them. CHASER will use an innovative technique (Freud et al. 2011; Freud and Rosenfeld 2012; Rosenfeld et al. 2012) and high-heritage (flown in a previous spaceflight mission) instruments to produce satellite-based remotely sensed observations of activated CCN and the properties of the clouds associated with them. CHASER will estimate updraft velocities at cloud base to calculate the number density of activated CCN as a function of the water vapor supersaturation. CHASER will determine the CCN concentration and cloud thermodynamic forcing (i.e., forcing caused by changes in the temperature and humidity of the boundary layer air) simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity of the weather system with respect to the desirable quantity) will allow the determination of each effect statistically.
95

Aerosol indirect effects from shipping emissions

Peters, Karsten, Stier, Philip, Quaas, Johannes, Graßl, Hartmut 26 August 2015 (has links) (PDF)
In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model’s sensitivity towards uncertainties associated with the emission parameterisation as well as with the shipping emissions themselves. Sensitivity experiments are designed to investigate (i) the uncertainty in the size distribution of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from shipping emissions to range from −0.32±0.01Wm−2 to −0.07±0.01Wm−2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.
96

Evaluation of cloud thermodynamic phase parametrizations in the LMDZ GCM by using POLDER satellite data

Doutriaux-Boucher, Marie, Quaas, Johannes 25 November 2015 (has links) (PDF)
Realistic simulations of clouds are of uppermost importance for climate modelling using general circulation models. Satellite data are well suited to evaluate model parametrizations. In this study we use the Laboratoire de Me´te´orologie Dynamique general circulation model (LMDZ). We evaluate the current LMDZ cloud phase parametrization, in which the repartition of condensed cloud water between liquid and ice is a function of the local temperature. Three parameters are used to derive a relation between liquid cloud water content and temperature, two of which are not physically based. We use the POLDER-1 satellite data to infer more realistic parameters by establishing statistical relationships between cloud top thermodynamical phase and cloud top temperature, consistently in both satellite data and model results. We then perform a multitude of short model integrations and derive a best estimate for the lowest local temperature where liquid water can exist in a cloud (Tice = -32°C in our parametrization). The other parameter which describes the shape of the transition between ice and liquid water is also estimated. A longer simulation has then been performed with the new parameters, resulting in an improvement in the representation of the shortwave cloud radiative forcing.
97

Estimates of aerosol radiative forcing from the MACC re-analysis

Bellouin, Nicolas, Quaas, Johannes, Morcrette, Jean-Jacques, Boucher, Olivier 14 August 2015 (has links) (PDF)
The European Centre for Medium-range Weather Forecast (ECMWF) provides an aerosol re-analysis starting from year 2003 for the Monitoring Atmospheric Composition and Climate (MACC) project. The re-analysis assimilates total aerosol optical depth retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) to correct for model departures from observed aerosols. The reanalysis therefore combines satellite retrievals with the full spatial coverage of a numerical model. Re-analysed products are used here to estimate the shortwave direct and first indirect radiative forcing of anthropogenic aerosols over the period 2003–2010, using methods previously applied to satellite retrievals of aerosols and clouds. The best estimate of globally-averaged, all-sky direct radiative forcing is −0.7±0.3Wm−2. The standard deviation is obtained by a Monte-Carlo analysis of uncertainties, which accounts for uncertainties in the aerosol anthropogenic fraction, aerosol absorption, and cloudy-sky effects. Further accounting for differences between the present-day natural and pre-industrial aerosols provides a direct radiative forcing estimate of −0.4±0.3Wm−2. The best estimate of globally-averaged, all-sky first indirect radiative forcing is −0.6±0.4Wm−2. Its standard deviation accounts for uncertainties in the aerosol anthropogenic fraction, and in cloud albedo and cloud droplet number concentration susceptibilities to aerosol changes. The distribution of first indirect radiative forcing is asymmetric and is bounded by −0.1 and −2.0Wm−2. In order to decrease uncertainty ranges, better observational constraints on aerosol absorption and sensitivity of cloud droplet number concentrations to aerosol changes are required.
98

Global observations of aerosol-cloud-precipitation-climate interactions

Rosenfeld, Daniel, Andreae, Meinrat O., Asmi, Ari, Chin, Mian, de Leeuw, Gerrit, Donovan, David P., Kahn, Ralph, Kinne, Stefan, Kivekäs, Niku, Kulmala, Markku, Lau, William, Schmidt, K. Sebastian, Suni, Tanja, Wagner, Thomas, Wild, Martin, Quaas, Johannes 24 August 2015 (has links) (PDF)
Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects ofmeteorology fromthose of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing.Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing.
99

The global aerosol-climate model ECHAM-HAM, version 2

Zhang, Kai, O'Donnell, Declan, Kazil, Jan, Stier, Philip, Kinne, Stefan, Lohmann, Ulrike, Ferrachat, Sylvaine, Croft, Betty, Quaas, Johannes, Wan, Hui, Rast, Sebastian, Feichter, Johann 23 October 2015 (has links) (PDF)
This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model’s capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation. Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced k-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker incloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7) between accumulation mode and coarse mode emission fluxes of aerosol number concentration. This leads to a general increase in the number concentration of smaller particles over the oceans in HAM2, as reflected by the higher Ångström parameters. Evaluation against observation reveals that in terms of model performance, main improvements in HAM2 include a marked decrease of the systematic negative bias in the absorption aerosol optical depth, as well as smaller biases over the oceans in Ångström parameter and in the accumulation mode number concentration. The simulated geographical distribution of aerosol optical depth (AOD) is better correlated with the MODIS data, while the surface aerosol mass concentrations are very similar to those in the old version. The total aerosol water content in HAM2 is considerably closer to the multi-model average from Phase I of the AeroCom intercomparison project. Model deficiencies that require further efforts in the future include (i) positive biases in AOD over the ocean, (ii) negative biases in AOD and aerosol mass concentration in high-latitude regions, and (iii) negative biases in particle number concentration, especially that of the Aitken mode, in the lower troposphere in heavily polluted regions.
100

Aerosol nucleation and its role for clouds and Earth’s radiative forcing in the aerosol-climate model ECHAM5-HAM

Kazil, Jan, Stier , Philip, Zhang, Kai, Quaas, Johannes, Kinne, Stefan, O'Donnell, D., Rast, Sebastian, Esch, Monika, Ferrachat, Sylvaine, Lohmann, Ulrike, Feichter, Johann 27 October 2015 (has links) (PDF)
Nucleation from the gas phase is an important source of aerosol particles in the Earth’s atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosolclimate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth’s radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are −1.15 W/m2 for charged H2SO4/H2O nucleation, −0.235 W/m2 for cluster activation, and −0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is −2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with −2.18 W/m2 to total absorbed solar short-wave radiation, compared to −0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth’s radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.

Page generated in 0.0462 seconds