Spelling suggestions: "subject:"agrégation protéique"" "subject:"l'agrégation protéique""
1 |
Caractérisations biochimiques des protéines à répétitions de dipeptides et de leurs assemblages / Biochemical Caracterisations of Dipeptides Repeat Proteins and their AssembliesBrasseur, Laurent 17 December 2019 (has links)
Résumé : La répétition de l’hexanucléotide GGGGCC est le facteur génétique le plus présent chez les patients atteints de démence fronto-temporale (DFT) et de sclérose latérale amyotrophique (SLA). Elle apparait au niveau du cadre de lecture ouvert 72 du chromosome 9 (C9orf72). D’une part, la DFT se caractérise par des troubles de la personnalité, du langage et du comportement causés principalement par une dégénérescence de neurones corticaux, thalamiques, hippocampiques et cérébelleux. D’autre part, les patients SLA sont atteints de paralysie des muscles squelettiques causée par la mort de motoneurones au niveau de la moelle épinière et du système moteur central. Ces deux pathologies partagent de nombreuses caractéristiques cliniques et génétiques, suggérant qu’il existe des mécanismes communs entre elles.D’abondantes inclusions cytoplasmiques de protéines issues de la traduction des ARN d’hexanucléotides ont été retrouvées dans le cerveau de patients décédés de SLA et de DFT. On appelle ces polypeptides : Protéines à Répétitions de Dipeptides (PRD), car ils ne sont composés que d’une suite de deux résidus : glycine-alanine (GA), glycine-proline (GP), glycine-arginine (GR), proline-arginine (PR) et proline-alanine (PA). La toxicité de ces PRD a été mise en évidence dans des modèles cellulaires, chez la drosophile mais aussi la souris. Cependant, peu d’études se sont concentrées sur la caractérisation biochimique de ces PRD.Le travail de cette thèse a consisté en la production et la caractérisation in vitro de PRD. J’ai réalisé la caractérisation biochimique de ces protéines et étudié leur capacité à s’auto-assembler au sein de l’équipe « Repliement des protéines in vitro et maladies conformationnelles » dirigée par Ronald Melki. Les PRD recombinants poly-GA, poly-PA et poly-GP ont été produits. Nous avons déterminé les conditions in vitro dans lesquelles ces protéines s’assemblaient. La morphologie des agrégats a été étudiée par microscopie électronique, tandis que la structure des protéines a été déterminée par spectromètre de dichroïsme circulaire pour la forme monomérique et par spectroscopie à infrarouge pour les assemblages.La toxicité, la propagation et la capacité de ces PRD à être internalisé sont testées dans des modèles cellulaires en collaboration avec l’équipe du Pr. Mimoun Azzouz de l’Université de Sheffield. / Abstract : The most common genetic factor between familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) is the repetition of (GGGGCC)n in the open reading frame 72 of chromosome 9 (C9orf72). FTD is characterized by personality, behavior and language disorders due to neuronal degeneration in the cortex, thalamus, hippocampus and cerebellum. ALS patients, on the other hand, exhibit motor symptoms primarily consisting of paralysis of the skeletal muscles caused by motoneuronal loss in the spinal cord and the central motor system. These pathologies have significant genetic and clinic overlaps suggesting common mechanisms.Large amounts of cytoplasmic inclusions of the Dipeptide Repeat Proteins (DRP), translated from C9orf72 RNA, were found in brains of patients who died from ALS or FTD.These proteins are constituted of repetitions of Dipeptides : glycine-alanine (poly-GA), glycine-proline (poly-GP), glycine-arginine (poly-GR), proline-arginine (poly-PR) and proline-alanine (poly-PA). The toxicity of the aggregated DRP has been shown in various cellular models as well as in drosophila and mice. Nevertheless, few studies have described the biochemistry of the DRP. The aim of my thesis is the in vitro caracterization of the DRP. I have characterized the biochemistry of these proteins and in particular their self-assembly abilities in Ronald Melki’s team « Proteins folding and conformational diseases ».Recombinant DRP of different lengths and nature have been produced to determined the in vitro conditions in which they assemble. The morphology of the related aggregates has been studied by transmission electron microscopy. Structure informations of DPR were obtained with Circular Dichroïsm spectrometry for monomers and Infrared spectroscopy for assemblies. Lastly, the toxicity and internalization abilities of these proteins and their assemblies are tested on culture cells in collaboration with Pr. Mimoun Azzouz of the University of Sheffield.
|
2 |
Dynamique de l'agrégation protéique chez la bactérie Escherichia coli / Dynamic of protein aggregation in Escherichia coliCoquel, Anne-Sophie 16 November 2012 (has links)
L’agrégation protéique joue un rôle clé dans la dégénérescence cellulaire et est notamment reliée à de nombreuses maladies humaines en lien avec le vieillissement telles que les maladies d’Alzheimer et Parkinson ou encore la maladie du prion. Chez la bactérie Escherichia coli, l’accumulation de dommages sous forme d’agrégats protéiques et leur ségrégation asymétrique au pôle ont permis de démontrer des signes de vieillissement chez cette bactérie. Cette thèse s’est concentrée sur l’étude de la dynamique spatiale des agrégats protéiques in vivo chez la bactérie E. coli. Les agrégats protéiques peuvent être classifiés comme corps d’inclusion dont on dit souvent qu’ils sont amorphes ou comme amyloïdes dont le niveau de structuration est très élevée par la présence de nombreux feuillets β. Combinant une double approche théorique et expérimentale, basée sur la modélisation et la microscopie time-lapse et microfluidique, nous avons étudié le mécanisme gouvernant le mouvement des agrégats protéiques et la transmission verticale d’agrégats de type prionoide sur plusieurs dizaines de générations. Nos résultats indiquent clairement que les agrégats protéiques sont régis par un mouvement Brownien de diffusion avec un coefficient de diffusion dépendant de la taille de la molécule. L’étude de protéinopathie amyloïde a démontré l’existence de lignages propageant deux types d’agrégats : globulaire ou en forme de "comet-like". Les lignées présentant les agrégats sous forme globulaire indiquent une augmentation de la taille des agrégats jusqu’à inhibition de la division cellulaire tandis que la forme "comet-like" est moins préjudiciable à la croissance. Nous avons également observé à faible fréquence des lignées avec un changement de type d’agrégat. A partir d’un agrégat gobulaire, des agrégats "comet-like" peuvent naître. / Protein aggregation plays a key role in cell decline and leads to several human disease linked to ageing like Alzheimer or Parkinson disease and prion disease. In Escherichia coli bacteria, ac- cumulation of damaged proteins and their asymmetric segregation allowed to show ageing signs. This thesis is focused on the in vivo spatial dynamics of protein aggregates in E. coli. Protein aggregates can be classified as inclusion bodies and they are amorphous or amyloid with a high order level due to β sheets. Combining a double theoretical and experimental approach, based on modeling and time-lapse and microfluidic microscopy, we studied the mechanism governing the motion of protein aggregates and the long-term vertical transmission of prionoid aggregates for about 10 generations. Our results show clearly that Brownian diffusion governs the motion of protein aggregates and the diffusion coefficient depends on the molecule size. The amyloid proteinopathy study shows the existence of lineages propagating two kind of aggregates : globular or comet-like. Lineages maintaining globular aggregates present an increase of the aggregate size until inhibition of the growth rate while comet-like aggregates are mildly detrimental to growth. We observed also at low frequency in some lineages the presence of both aggregates and a switch between them. Glo- bular foci give born to comet-like aggregates.
|
3 |
Dynamique de l'agrégation protéique chez la bactérie Escherichia coliCoquel, Anne-Sophie 16 November 2012 (has links) (PDF)
L'agrégation protéique joue un rôle clé dans la dégénérescence cellulaire et est notamment reliée à de nombreuses maladies humaines en lien avec le vieillissement telles que les maladies d'Alzheimer et Parkinson ou encore la maladie du prion. Chez la bactérie Escherichia coli, l'accumulation de dommages sous forme d'agrégats protéiques et leur ségrégation asymétrique au pôle ont permis de démontrer des signes de vieillissement chez cette bactérie. Cette thèse s'est concentrée sur l'étude de la dynamique spatiale des agrégats protéiques in vivo chez la bactérie E. coli. Les agrégats protéiques peuvent être classifiés comme corps d'inclusion dont on dit souvent qu'ils sont amorphes ou comme amyloïdes dont le niveau de structuration est très élevée par la présence de nombreux feuillets β. Combinant une double approche théorique et expérimentale, basée sur la modélisation et la microscopie time-lapse et microfluidique, nous avons étudié le mécanisme gouvernant le mouvement des agrégats protéiques et la transmission verticale d'agrégats de type prionoide sur plusieurs dizaines de générations. Nos résultats indiquent clairement que les agrégats protéiques sont régis par un mouvement Brownien de diffusion avec un coefficient de diffusion dépendant de la taille de la molécule. L'étude de protéinopathie amyloïde a démontré l'existence de lignages propageant deux types d'agrégats : globulaire ou en forme de "comet-like". Les lignées présentant les agrégats sous forme globulaire indiquent une augmentation de la taille des agrégats jusqu'à inhibition de la division cellulaire tandis que la forme "comet-like" est moins préjudiciable à la croissance. Nous avons également observé à faible fréquence des lignées avec un changement de type d'agrégat. A partir d'un agrégat gobulaire, des agrégats "comet-like" peuvent naître.
|
Page generated in 0.1332 seconds