• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 675
  • 400
  • 118
  • 45
  • 39
  • 23
  • 18
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 8
  • Tagged with
  • 1798
  • 1798
  • 462
  • 388
  • 337
  • 242
  • 217
  • 188
  • 176
  • 164
  • 163
  • 153
  • 150
  • 145
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
821

Application of an ensemble-trained source apportionment method to speciated pm2.5 data at the st. louis midwest supersite

Maier, Marissa Leigh 22 May 2012 (has links)
Four receptor models and a chemical transport model were used to quantify the sources of PM2.5 impacting the St. Louis Supersite (STL-SS) between June 2001 and May 2003. The receptor models utilized two independent datasets, one that included ions and trace elements and a second that incorporated 1-in-6 day organic molecular marker data. Since each source apportionment (SA) technique has its own limitations, this work compared the results of five different SA approaches to better understand the biases and limitations of each. The source impacts predicted by these five models were then integrated into an ensemble-trained SA methodology. The ensemble method offered several improvements over the five individual SA techniques. Primarily, the ensemble method calculated source impacts on days when individual models either did not converge to a solution or did not have adequate input data to develop source impact estimates. Additionally, the ensemble method resulted in fewer days on which major emissions sources (e.g., secondary organic carbon and diesel vehicles) were estimated to have either a zero or negative impact on PM2.5 concentrations at the STL-SS. When compared with a traditional chemical mass balance (CMB) approach using measurement-based source profiles (MBSPs), the ensemble method was associated with better fit statistics, including reduced chi-squared values and improved PM2.5 mass reconstruction. A comparison of the different modeling techniques also revealed some of the subjectivities associated with applying specific SA models to the STL-SS dataset. For instance, positive matrix factorization (PMF) results were very sensitive to both the fitting species and number of factors selected for the analysis, whereas source impacts predicted in CMB were sensitive to the selection of source profiles to represent local metals processing emissions. Additionally, the different SA approaches predicted different impacts for the same source on a given day, with correlation coefficients ranging from 0.03 to 0.66 for gasoline vehicle, -0.51 to 0.85 for diesel vehicles, -0.29 to 0.86 for dust, -0.34 to 0.76 for biomass burning, 0.22 to 0.72 for metals processing, and -0.70 to 0.68 for secondary organic carbon. These issues emphasized the value of using several different SA techniques at a given receptor site, either by comparing source impacts predicted by different models or by utilizing an ensemble-trained SA technique.
822

Evaluating outdoor asbestos abatement activities in an idled petroleum refinery /

Tutt, Robert Dean, January 2001 (has links) (PDF)
Thesis--University of Oklahoma. / Includes bibliographical references (leaves 49-50).
823

Acute effects of ambient ozone on a daily hospital admissions and daily mortality for respiratory and cardiovascular diseases among residents of Bangkok, Thailand

Ruangdej, Kannika. January 2007 (has links) (PDF)
Thesis (D.P.H.)--University of Alabama at Birmingham, 2007. / Title from PDF title page (viewed on Feb. 19, 2010). Includes bibliographical references (p. [197]-216).
824

Exposure to particulate matter and the related health impacts in major Estonian cities

Orru, Hans, January 2009 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2009. / Härtill 5 uppsatser. Även tryckt utgåva.
825

A Modeling Investigation of Human Exposure to Select Traffic-Related Air Pollutants in the Tampa Area: Spatiotemporal Distributions of Concentrations, Social Distributions of Exposures, and Impacts of Urban Design on Both

Yu, Haofei 01 January 2013 (has links)
Increasing vehicle dependence in the United States has resulted in substantial emissions of traffic-related air pollutants that contribute to the deterioration of urban air quality. Exposure to urban air pollutants trigger a number of public health concerns, including the potential of inequality of exposures and health effects among population subgroups. To better understand the impact of traffic-related pollutants on air quality, exposure, and exposure inequality, modeling methods that can appropriately characterize the spatiotemporally resolved concentration distributions of traffic-related pollutants need to be improved. These modeling methods can then be used to investigate the impacts of urban design and transportation management choices on air quality, pollution exposures, and related inequality. This work will address these needs with three objectives: 1) to improve modeling methods for investigating interactions between city and transportation design choices and air pollution exposures, 2) to characterize current exposures and the social distribution of exposures to traffic-related air pollutants for the case study area of Hillsborough County, Florida, and 3) to determine expected impacts of urban design and transportation management choices on air quality, air pollution exposures, and exposure inequality. To achieve these objectives, the impacts of a small-scale transportation management project, specifically the '95 Express' high occupancy toll lane project, on pollutant emissions and nearby air quality was investigated. Next, a modeling method capable of characterizing spatiotemporally resolved pollutant emissions, concentrations, and exposures was developed and applied to estimate the impact of traffic-related pollutants on exposure and exposure inequalities among several population subgroups in Hillsborough County, Florida. Finally, using these results as baseline, the impacts of sprawl and compact urban forms, as well as vehicle fleet electrification, on air quality, pollution exposure, and exposure inequality were explored. Major findings include slightly higher pollutant emissions, with the exception of hydrocarbons, due to the managed lane project. Results also show that ambient concentration contributions from on-road mobile sources are disproportionate to their emissions. Additionally, processes not captured by the CALPUFF model, such as atmospheric formation, contribute substantially to ambient concentration levels of the secondary pollutants such as acetaldehyde and formaldehyde. Exposure inequalities for NOx, 1,3-butadiene, and benzene air pollution were found for black, Hispanic, and low income (annual household income less than $20,000) subgroups at both short-term and long-term temporal scales, which is consistent with previous findings. Exposure disparities among the subgroups are complex, and sometimes reversed for acetaldehyde and formaldehyde, due primarily to their distinct concentration distributions. Compact urban form was found to result in lower average NOx and benzene concentrations, but higher exposure for all pollutants except for NOx when compared to sprawl urban form. Evidence suggests that exposure inequalities differ between sprawl and compact urban forms, and also differ by pollutants, but are generally consistent at both short and long-term temporal scales. In addition, vehicle fleet electrification was found to result in generally lower average pollutant concentrations and exposures, except for NOx. However, the elimination of on-road mobile source emissions does not substantially reduce exposure inequality. Results and findings from this work can be applied to assist transportation infrastructure and urban planning. In addition, method developed here can be applied elsewhere for better characterization of air pollution concentrations, exposure and related inequalities.
826

Assessment of indoor air quality in Texas elementary schools

Sanders, Mark Daniel, 1973- 02 October 2012 (has links)
Poor indoor air quality in schools is associated with diminished learning, health risks to students and staff, and economic costs. This dissertation reports findings from the Texas Elementary School Indoor Air Study (TESIAS). The objective of this investigation is to establish a baseline for indoor environmental parameters. The investigation selected 30 elementary schools from 2 school districts. One school district was located along the Texas/Mexico border in a hot-humid climate region. The other school district was located in central Texas in a mixed-humid climate region. Phase I of the study was a questionnaire completed by 1336 teachers and other school staff. Phase II of the study collected both qualitative and quantitative data in 120 classrooms including continuous monitoring of comfort parameters (carbon monoxide, carbon dioxide, temperature, and relative humidity). Phase III collected more in-depth quantitative data, including fungi and bacteria concentrations, in 12 classrooms. This dissertation investigates potential differences in the study data between school districts and between portable and traditional classrooms. The two major findings of this study concern water leakage from roofs and inadequate ventilation. Roof leaks were the highest reported source of water incursion and correlated with health symptoms. Free-standing small footprint classrooms had fewer roof and wall leaks than traditional classrooms. The simple low pitch roof design and sufficient overhangs typically found on the small footprint buildings studied likely result in less reported roof leaks. The measured carbon dioxide concentrations (both average and peak values) were well in excess of the recommended maximums and fewer than 15% of the classrooms met the recommended maximum concentrations. Relatively higher CO2 concentrations and relative humidity in the border school district were attributed to a greater frequency of blocked outdoor air intakes. Further investigation of novel HVAC systems, such as low velocity displacement ventilation, is needed. Ultimately, this study enables the development of best practices for school design for improved indoor air quality. / text
827

Evaluation of human exposure to indoor airborne pollutants : transport and fate of particulate and gaseous pollutants

Rim, Donghyun 16 October 2012 (has links)
Building environmental conditions such as ventilation and contaminant concentrations are important factors that influence occupant health and comfort. The objective of the present work is to investigate how personal exposure to gaseous and particulate pollutants depends on indoor airflow, source characteristics, and occupant activity in commercial and residential environments. The study examines airflow and pollutant transport using experimental measurements in conjunction with computational fluid dynamics (CFD). The results demonstrate that breathing has a measurable influence on the airflow in an occupant breathing zone, but it has very small impacts on the occupant thermal plume. The results also show that breathing can significantly affect inhaled particle concentrations, even though the influence varies with source position and particle size. Also, localized hand motions of a sitting manikin do not significantly disrupt the upward thermal plume. In typical US residences, forced convection driven mixing airflow or buoyancy driven stratified airflow occurs depending on the HVAC fan operation (fan on or fan off, respectively). The measured transition period between mixing flow (fan on) and stratified flow (fan off) is approximately one minute, implying that most airflow in the residence is either dominated by mixing or stratification. A high level of exposure to short-term pollutant sources, such as resuspension of particles from floor surfaces due to human activity, more likely occurs with stratified flow than with highly mixed airflow. This is due to the strong influence of the occupant thermal plume that transports the pollutants into the breathing zone. Furthermore, by transporting air containing ozone across the reactive occupant surface, the occupant thermal plume has a large effect on exposure to ozone reaction products. Due to the reaction of ozone with the skin oils and clothing surfaces, the occupant surface boundary layer becomes depleted of ozone and conversely enriched with ozone reaction products. The parameter ventilation effectiveness quantifies the effectiveness of airflow distribution and can be used for assessment of exposure to gaseous pollutants. Based on the study results, the usefulness of ventilation effectiveness as an indicator of exposure to particulate pollutants depends on the particle size. For small particles (~1 [mu]m), an increase of ventilation effectives caused a decrease in occupant exposure, while for large particles (~7 [mu]m), source location and airflow around the pollutant source are significant factors for the exposure, and the ventilation effectiveness has very little to no effect. / text
828

Air quality in the Houston Ship Channel region : an environmental and land use analysis

Nasser, Omar Maher 04 December 2013 (has links)
Despite federal, state, and local efforts to combat environmental injustices resulting from heavy industrial activity and high air pollution levels, there is a widespread tendency for hazardous industrial activities to locate near low-income, underrepresented ethnic populations in the United States. The Houston Ship Channel, a port containing the largest concentration of Petrochemical Facilities in the United States, evidences this tendency and provides a stellar example of the nexus between poverty, race, industrial location, and air pollution levels. As a result of the heavy industrial activities in the East Houston area adjacent to the Houston Ship Channel, the surrounding residential area’s air quality levels are significantly poor in relation to federal, state, and local standards. Not coincidentally, these neighborhoods are predominantly low-income and Hispanic in makeup. Unfortunately, there exist few or no federal or state accountability and enforcement mechanisms to resolve this serious problem. In addition, Houston’s lack of zoning and weak land use regulations provides little opportunity for the situation to improve. Although community organization efforts have succeeded in terms of mobilization, education, and consensus building, more effective local planning tools, supported by federal regulations and applied research, would serve to remove the roadblocks that have hindered the advancement of policies promoting enhanced air quality controls, and thus improve the quality of life of the residents of East Houston. / text
829

A review of emission trading and its implementation in Hong Kong

吳宇茵, Ng, Yu-yan, Amanda. January 2007 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
830

The 1990 air pollution control regulation: a story of reducing the sulphur dioxide levels in ambient air in HongKong

Yan, Chun-man., 甄俊文. January 2010 (has links)
published_or_final_version / Public Health / Master / Master of Public Health

Page generated in 0.0909 seconds