• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 744
  • 196
  • 122
  • 34
  • 34
  • 18
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • 11
  • Tagged with
  • 1538
  • 308
  • 160
  • 149
  • 133
  • 129
  • 124
  • 119
  • 107
  • 80
  • 78
  • 67
  • 63
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
971

Energy Evaluation of the High Velocity Algae Raceway Integrated Design (ARID-HV)

Attalah, Said January 2013 (has links)
The original ARID (Algae Raceway Integrated Design) raceway was an effective method to increase temperature toward the optimal growth range. However, the energy input was high and flow mixing was poor. Thus, the ARID-HV (High Velocity Algae Raceway Integrated Design) raceway was developed to reduce energy input requirements and improve flow mixing. This was accomplished by improving pumping efficiency and using a serpentine flow pattern in which the water flows through channels instead of over barriers. A prototype ARID-HV system was installed in Tucson, Arizona, and the constructability, reliability of components, drainage of channels, and flow and energy requirements of the ARID-HV raceway were evaluated. Each of the electrical energy inputs to the raceway (air sparger, air tube blower, canal lift pump, and channel recirculation pump) was quantified, some by direct measurement and others by simulation. An algae growth model was used to determine the algae production rate vs. flow depth and time of year. Then the electrical energy requirement of the most effective flow depth was calculated. Channel hydraulics was evaluated with Manning's equation and the corner head loss equation. In this way, the maximum length of channels for several raceway slopes and mixing velocities were determined. Algae production in the ARID-HV raceway was simulated with a temperature and light growth model. An energy efficient design for the ARID-HV raceway was developed.
972

Bioadsorption of Copper (II) By Chlorella Sp. Biomass: Continuous Process with Cost Analysis and Comsol Model Simulations

Jones, Lisa A. January 2013 (has links)
With the continuous improvement in knowledge and health risks associated with heavy metal expulsion, government environmental agencies are continuously reducing the legal disposal limits. However, the demand for items like IPods or energy-efficient appliances containing heavy metal like copper is on the rise. Whether from commercial or residential areas, heavy metals are known to have toxic effects on humans, animals, and/or ecosystems; hence, their removal is necessary part of preserving our environment. With the rising cost of natural resources, biological species have proven to be viable alternatives in the jet fuel and biodiesel industries. Algal biomass is widely considered economical because of its renewable, biodegradable, noncompetitive, and nontoxic properties. Currently, algae are being grown on waste water for the lipid; this research involves taking the left over or lipid-extracted algae (LEA) for utilization as a biosorbant to remove heavy metals from wastewater. Down selection via batch processes showed that Chlorella sorokianna and its associated lipid-extracted algae (LEA) demonstrated similar adsorption capacities of copper (II) as three current-in-use ion exchange resins. A feasibility study proved that the LEA was an economically realistic means to remove copper (II) from effluent. The LEA biomass is capable of a maximum adsorption of 14.36 ± 0.27 mg of copper (II) per gram of dry biomass for six regeneration, sorption-desorption, cycles with nitric acid. Using SEM and FTIR, the LEA is capable of ion exchange electrostatic interaction with various surface sites of carboxyl, hydroxyl, and metal groups. Next, the batch process was used to fabricate a lab-scale continuous column process much like ion exchange or activated carbon columns in a waste water treatment plant. Using the continuous systems' kinetics and cycle life, a cost analysis was performed on a plant scale column to reduce copper (II) in wastewater for recovery at a later date, which would yield cost saving over the life of columns. To install three LEA columns prior to ion exchange in a waste water treatment plant, the total capital expense is $1.03 million for a one year time line. The bidirectional flow columns are meant as pretreatment prior to ion exchange columns. The LEA columns provide a waste water treatment plant a sustainable, greener and cheaper alternative to offset costs associated with purifying waste water.
973

Probing molecular tracers in geobiological systems using imaging mass spectrometry

Leefmann, Tim 11 April 2013 (has links)
No description available.
974

DEVELOPMENT OF ANALYTICAL METHODS AND REFERENCE MATERIALS FOR CYANOBACTERIAL TOXINS

Hollingdale, Christie 16 May 2013 (has links)
Cyanobacterial toxins present a real and growing threat to humans and animals due to the projected increases in algal blooms resulting from increasing global temperature and pollution. Wild animals, livestock, pet animals and humans can be poisoned from contaminated drinking water. With the discovery of cyanobacterial toxins present in nutritional supplements, a new concern looms over consumers with threats of neurotoxin and hepatotoxin related damage from exposure to these products. To this end, work on the development of a freeze dried algal reference material was pursued for future use in environmental and nutritional supplement analysis. The first stage of the project was to prepare needed calibration standards, starting with homoanatoxin a, a homologue of the highly neurotoxic anatoxin-a compound. The resulting reference material (RM-hATX) had a homoanatoxin-a concentration of 20.2 ± 0.7 ?M, and proved to be stable while stored at temperatures of 80°C. Reference samples for dihydro and epoxy analogues of anatoxin-a and homoanatoxin-a were then prepared by semi-synthesis. The second stage of the project was the development of new analytical methods for the anatoxins. A derivatization reaction in which dansyl chloride was coupled with a novel cleanup step produced anatoxin derivatives suitable for liquid chromatography (LC) with mass spectrometry (MS) or fluorescence detection (FLD). Limits of quantitation were 60 ng L-1 and 1.6 ?g L-1 for the developed LC-MS/MS and LC-FLD methods, respectively, with the limit of quantitation significantly better than that of a previously developed method for the underivatized toxins based on HILIC MS/MS. Quantitative results for anatoxins in various algal samples using all three methods of analysis of were compared and it was found that there were no significant differences between the three methods. Unfortunately, experiments showed that the various toxin analogues did not elicit equimolar responses in either LC-MS/MS or LC FLD, thus indicating the importance of having individual calibration standards for quantitative analysis. The LC-MS/MS and LC-FLD methods were paired with a previously developed method for the analysis of hepatotoxic microcystins to screen a small number of nutritional supplement samples for cyanobacterial toxins. Microcystins were detected in all five Aphanizomenon flos-aquae samples examined. This method involved a fifteen-fold pre-concentration using a solid phase extraction cartridge, which gave a 98% recovery of microcystins. The third phase of the project was the preparation and testing of a preliminary algal matrix reference material as a feasibility study for the eventual production of a CRM. After selecting various algal cultures and samples that could be blended together, a freeze dried algal reference material was prepared and packaged. This material (RM-BGA) was then characterized using several methods including the two new dansylation-based procedures.
975

Species identification and discovery in common marine macroalgae: Fucus, Porphyra and Ulva using a DNA barcoding approach.

Hana, Kucera January 2010 (has links)
The oceans represent a wealth of biological diversity where many species remain to be discovered and described. Among seaweeds, a paucity of morphological features by which to differentiate species means that many genera harbour overlooked or cryptic species. Fucus, Porphyra and Ulva are three common genera of marine intertidal algae and all include species that are particularly difficult to distinguish morphologically. DNA barcoding has been championed as a revolutionary tool for species identification and discovery and applying this tool to algae was a logical step due to the difficulty of morphological identification of many algal species. This thesis is part of a significant initiative aimed at identification and discovery of all species of seaweeds in Canadian waters, using a DNA barcoding approach. The original concept of DNA barcoding relied on comparing the 5’ region of the mitochondrial cytochrome c oxidase 1 (COI-5P) gene among animal species. In this study, DNA barcoding with COI-5P was applied to the brown algal genus Fucus and worked as well as any other marker to assign morphologies to known species. The DNA barcoding results also uncovered substantial phenotypic diversity in Pacific F. distichus. Results were confirmed by comparison with sequences of the nuclear internal transcribed spacer region (ITS). For Porphyra, COI-5P DNA barcoding was compared with species identification using the chloroplast large rubisco subunit (rbcL) and the Universal Plastid Amplicon (UPA) in a floristic survey of Canadian Porphyra species. Two new species were discovered and described (Porphyra corallicola and Porphyra peggicovensis), and P. cuneiformis was synonymized with P. amplissima. The COI-5P emerged as the best marker for species discrimination despite difficulties with primer universality. To aid in choosing a marker for DNA barcoding for green algae, the universality and species discriminatory power of the rubisco large subunit (rbcL) (considering the 5’ and 3’ fragments independently), the UPA, the D2/D3 region of the nuclear large ribosomal subunit (LSU-D2/D3) and the ITS were evaluated. While the rbcL-3P highlighted several cryptic species, and worked well to distinguish Ulva species, more research is needed to recommend a marker for DNA barcoding generally in marine green macroalgae.
976

Pharmacokinetic modeling of pollutant fluxes by limnoplankton

Wen, Yuan Hua. January 1996 (has links)
The objective of this thesis was to construct general models to predict pollutant fluxes in limnoplankton by incorporating characteristics of the organism and the structures of the chemical. A two-compartmental pharmacokinetic model was used to quantify the pollutant uptake, depuration and intercompartmental exchanges. The model pollutants were phosphorus and 22 organic chemicals. / The rate constants of phosphorus uptake, excretion and intercompartmental changes by algae and cladocerans decreased with cell volume or body size raised to a power close to $-$0.25, except the intercompartmental exchanges for cladocerans which showed more negative slopes. In contrast, uptake, excretion and internal exchange rates per individual increased with cell size or body weight to a power similar to 0.75 with a similar exception for the cladoceran intercompartmental exchanges, which had slopes $<$0.75. / Bioconcentration factors, rate constants and flux rates of uptake and intercompartmental exchange from metabolic pool to structural pool of 22 $ sp{14}$C-labelled organic toxicants by Chlorella pyrenoidosa and Daphnia magna were positively correlated with the octanol/water partition coefficient, molecular weight, parachor, connectivity index, boiling point and melting point, and negatively with aqueous solubility. However, those of elimination and internal transfer from structural pool to metabolic pool showed opposite changes. Comparisons of pharmacokinetic parameters between Daphnia and Chlorella demonstrated that, although all kinetic parameters displayed similar patterns, the relative magnitudes of each corresponding parameters were significantly different between two species.
977

Composite Electrodes With Immobilized Bacteria Bioanode and Photosynthetic Algae Biocathode for Bio-Batteries

2014 January 1900 (has links)
A novel electrode was constructed and tested in a bio-battery. This configuration consisted of a composite electrode with immobilized bacteria (Escherichia coli K-12) in the anode and a composite electrode with immobilized Carbon Nanoparticles (CNP) and algae (Chlorella vulgaris/Scenedesmus sp.) suspended in the cathode. The composite electrode consisted of three parts: a 304L stainless steel mesh base, an electro-polymerized layer of pyrrole, and an electro-polymerized layer of methylene blue. The bacteria were immobilized on the anode electrode using a technique incorporating CNP and a Teflontm emulsion. The anode and cathode electrodes were tested separately in conjunction with chemical cathodes and anodes respectively. The composite electrode with immobilized bacteria was tested in a bioanode setup. The cathode chamber of the cell contained a potassium ferricyanide and buffer solution with a graphite electrode. Factors affecting electrode performance, such as Teflontm and carbon nanoparticle concentration, were investigated to find optimum values. The maximum power density generated by the composite electrode with immobilized bacteria and a chemical cathode was 378 mW/m2. This electrode configuration produced approximately 69% more power density and 53% more current density than composite electrodes with bacteria suspended in solution. Electrochemical Impedance Spectroscopy analysis determined that a significant portion of the bio-battery’s resistance to charge transfer occurred at the surface of the anode and this resistance was significantly lowered when using immobilized bacteria (51% lower than bio-batteries with suspended bacteria). Similarly, biocathodes containing composite electrodes coated with CNP were tested using two algae species, Chlorella vulgaris and Scenedesmus sp., suspended in solution. This electrode configuration was compared with composite electrode without CNP coating. The anode chamber contained potassium ferrocyanide solution with a graphite counter electrode. The composite electrode with CNP produced approximately 23% more current density than composite electrode without CNP. A complete bio-battery was designed using a composite electrode with immobilized bacteria anode and a CNP coated composite electrode with algae suspended in the cathode. EIS analysis showed that the resistance was higher in the biocathode than in the bioanode and a significant portion of the ohmic resistance was contributed by the membrane.
978

Enhancing efficiency of biofuels from microalgae using a statistical and mathematical approach.

Pillay, Kamleshan. 05 November 2013 (has links)
Algae are primary producers in aquatic ecosystems and are thus the most important organisms in maintaining ecosystem functioning and stability. The usage of algae by humans is quite extensive; they act as an ingredient in aquaculture feed, a potential biomedical resource, as a fertiliser and as a nutritional source. Recently, algae have been identified as a third generation biofuel feedstock for fuel generation which essentially means that algae are more efficient, net carbon neutral and have less impacts on the environment. Algae as organisms are extremely sensitive to changes in the immediate environment. The interaction of parameters with each other causes minute changes in the environment which may alter the algae biomass present and the lipids that can be extracted from the biomass. The focus of this study is to model and determine which conditions maximise algal biomass and the subsequent lipids that can be extracted from the biomass. This will allow biofuel producers to understand which conditions are the best for harvesting algae in artificial conditions or harvesting algae from the wild. Furthermore, the model developed has broad application for biofuel specialists, pollution remediation specialists and biologists. This model developed is able to determine the present state of the algal bloom and uses the present state to predict the future state of bloom hence determining the optimal conditions to harvest. The model was developed under optimal ranges described by the Food and Agriculture Organisation (FAO) and designed to replicate the most common combinations of parameters present in the wild. For the purposes of this study, various combinations of parameters within their optimal ranges that is temperature (18 – 24°C), salinity (20 – 24 p.p.t.) and photoperiod (25 – 75% light exposure) were assessed. The model was run for 72 hours with sampling every 6 hours. Every six hours, algal growth was measured by the biomass present (chloro-pigments used as estimators); this was done by fluorescence. Lipids were then extracted from algal biomass using the Bligh and Dyer method (1959). Spline curves were fitted to the data and analysis performed using Mathematica 8.0. It was found that photoperiod was the most important variable in controlling algal growth. Furthermore, lipids extracted from biomass were at their highest when algae were exposed to the conditions 75% light exposure, 21°C and 22 p.p.t. These conditions would allow for the highest amount of biofuel to be produced. Generally, algae biomass trend graphs mimic lipid trend graphs over the 72 hour period that is when lipids are at their maximum, biomass concentrations are at their maximum. It can be concluded from time model that the best time to harvest biomass is 48 hours from the initial start time of algal growth to gain the highest amount of lipids for biofuel production. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2012.
979

Analysis of sea ice microalgae biomass variability using transmitted irradiance

Campbell, Karley 06 November 2012 (has links)
The spring bloom of microalgae within the bottom of sea ice provides a significant contribution to primary production in the Arctic Ocean. The aim of this research was to improve observations of the ice algae bloom using a transmitted irradiance technique to remotely estimate biomass, and to examine the influence of physical processes on biomass throughout the sea ice melt season. Results indicate that bottom ice temperature is highly influential in controlling biomass variability and bloom termination. Snow depth is also significant as it buffers ice temperature from the atmosphere and largely controls transmission of photosynthetically active radiation (PAR). The relationship between snow depth and biomass can change over the spring however, limiting biomass accumulation early on while promoting it later. Brine drainage, under-ice current velocity, and surface PAR in the absence of snow cover are also important factors. Overall this research helps to characterize the spring ice algae bloom in the Arctic by improving in situ biomass estimates and identifying primary factors controlling it.
980

ALGAE OR YEAST SUPPLEMENTATION FOR LACTATING DAIRY COWS

Weatherly, Maegan E 01 January 2015 (has links)
The objective of the first study was to quantify the effects of feeding Schizochytrium sp. microalgae (SP-1, Alltech, Inc., Nicholasville, KY) on milk fat and DHA content. Eight cows were fed: 0, 100, 300, or 600 g of algae per day. Fat percentage was greater (P < 0.05) for cows on treatments 0 g and 100 g than for cows on treatments 300 g and 600 g (P < 0.05). Docosahexaenoic acid in milk was greater for cows on treatment 300 and 600 than for cows on treatment 0 and 100 (P < 0.05). The objective of the second study was to assess yeast supplementation effects on high and low forage dairy cow diets. Four cows were assigned to 1 of 4 treatments: 1) low forage (LF), 2) low forage with 10 g/d yeast (Yea-Sacc®; Alltech Inc., Nicholasville, KY; LFY), 3) high forage (HF), or 4) high forage with 10 g/d yeast (HFY). Only rumination time and DMI were influenced by treatment (P < 0.01). Dry matter intake was 17.05, 13.41, 19.44, and 20.29 ± 1.40 kg/d and rumination time was 442.88, 323.09, 433.34, and 475.50 ± 21.93 min/d for cows on the LF, LFY, HF, and HFY treatments, respectively.

Page generated in 0.0446 seconds