• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 836
  • 294
  • 114
  • 70
  • 57
  • 22
  • 20
  • 16
  • 16
  • 15
  • 15
  • 15
  • 12
  • 12
  • 10
  • Tagged with
  • 1786
  • 508
  • 476
  • 412
  • 255
  • 243
  • 144
  • 143
  • 141
  • 141
  • 132
  • 126
  • 126
  • 114
  • 105
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Deformation of Orbits in Minimal Sheets

Budmiger, Jonas 08 April 2010 (has links) (PDF)
The main object of study of this work are orbits in so-called minimal sheets in irreducible representations of semisimple groups. Let $G$ be a semisimple group. The notion of sheets goes back to Dixmier: Given a $G$-module $V$, the union of all orbits in $V$ of a fixed dimension is a locally closed subset. Its irreducible components are called sheets of $V$. We call a sheet minimal if it contains an orbit in $V$ of minimal strictly positive dimension among all orbits in $V$. In Chapter I, some notation is fixed and some basic results are proved. In Chapter II, we describe minimal sheets in simple $G$-modules, and study $G$-stable deformations of orbits in minimal sheets by means of an invariant Hilbert scheme. Invariant Hilbert Schemes have been introduced by Alexeev and Brion in 2005. These are quasi-projective schemes representing functors of families of $G$-schemes with prescribed Hilbert function. The discussion in Chapter II is closely related to the work of Jansou in the following way: Choose once and for all a highest weight vector $v_\lambda \in V(\lambda)$ for each dominant weight $\lambda \in \Lambda^+$, and let $X_\lambda = \overline{G v_\lambda} \subset V(\lambda)$ be the closure of the orbit $G v_\lambda$ of $v_\lambda$ in $V(\lambda)$. In his thesis Jansou investigates $G$-stable deformations of $X_\lambda$ in $V(\lambda)$. If $h_\lambda$ denotes the Hilbert function of $X_\lambda$, then Jansou proves that the invariant Hilbert scheme $Hilb^G_{h_\lambda}(V(\lambda))$ is an affine space of dimension 0 or 1, depending on $G$ and $\lambda$. Furthermore, he gives a complete list of all pairs $(G,\lambda)$ such that $Hilb^G_{h_\lambda}(V(\lambda))$ is an affine line. In the sequel, we call these weights Jansou-weights. The orbit $Gv_\lambda$ is of minimal strictly positive dimension among all $G$-orbits in $V(\lambda)$. There exist other orbit of the same dimension as $Gv_\lambda$ in $V(\lambda)$ if and only if $\lambda$ is an integral multiple of a Jansou-weight. Here, we start with a general orbit $X$ of minimal strictly positive dimension in a fixed simple $G$-module $V(\lambda)$, and we study $G$-stable deformations of $X$. In particular, we conjecture that the invariant Hilbert scheme parametrizing the $G$-stable deformations of $X$ in the closure of the sheet of $X$ is an affine space of dimension either 0 or 1. This will stand in contrast to the fact that the invariant Hilbert scheme parametrizing the $G$-stable deformations of $X$ in $V(\lambda)$ can look much more complicated. This is the content of Chapter III, in which we will focus on the group $\SL_2$, and compute some corresponding invariant Hilbert schemes. In particular, we study deformations of orbits of the form $SL_2 \cdot x^{d/2}y^{d/2}$ in the space $k[x,y]_d = V(d)$ of binary forms of degree $d$. It turns out that easiest accessible case is when $d$ is a multiple of 4, and even in this case the corresponding invariant Hilbert scheme can become very complicated. This reflects the principle that even in `simple' cases for invariant Hilbert schemes all possible sort of `bad' things (different irreducible components, non-reduced points, singularities) occur. (This `bad' behavior is also encountered in the case of the classical Grothendieck Hilbert scheme parametrizing closed subschemes of projective space with a given Hilbert polynomial.) In Chapter III Classical Invariant Theory is often used, and some computations are computer-based. Finally, in Chapter IV we turn our attention to not necessarily simple modules. In the multiplicity-free case important work has been done by Bravi and Cupit-Foutou. We translate some of their results to the case of not necessarily multiplicity-free modules. This corrects a result by Alexeev and Brion. Chapter IV is independent from the preceding chapters.
242

Enumeration and normal forms of singularities in Cauchy-Riemann structures /

Coffman, Adam Nathaniel. January 1997 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Mathematics, August 1997. / Includes bibliographical references. Also available on the Internet.
243

Self-Dual Algebraic Varieties and Nilpotent Orbits

Vladimir L. Popov, popov@ppc.msk.ru 22 January 2001 (has links)
No description available.
244

Birational isomorphisms between Severi-Brauer varieties

Krashen, Daniel Reuben, January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references. Available also from UMI/Dissertation Abstracts International.
245

Birational isomorphisms between Severi-Brauer varieties /

Krashen, Daniel Reuben, January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references (leaves 106-107). Available also in a digital version from Dissertation Abstracts.
246

Dirichlet's Theorem in projective general linear groups and the Absolute Siegel's Lemma

Pekker, Alexander 28 August 2008 (has links)
Not available / text
247

Birational isomorphisms between Severi-Brauer varieties

Krashen, Daniel Reuben, 1973- 23 March 2011 (has links)
Not available / text
248

Group laws and complex multiplication in local fields.

Urda, Michael January 1972 (has links)
No description available.
249

An algebraic study of residuated ordered monoids and logics without exchange and contraction.

Van Alten, Clint Johann. January 1998 (has links)
Please refer to the thesis for the abstract. / Thesis (Ph.D.)-University of Natal, Durban, 1998.
250

Distribution of additive functions in algebraic number fields /

Hughes, Garry. January 1987 (has links) (PDF)
Thesis (M. Sc.)--University of Adelaide, 1987. / Includes bibliographical references (leaves 90-93).

Page generated in 0.0314 seconds