261 |
Continued fractions which correspond to two series expansions and the strong Hamburger moment problemSri Ranga, A. January 1984 (has links)
Just as the denominator polynomials of a J-fraction are orthogonal polynomials with respect to some moment functional, the denominator polynomials of an M-fraction are shown to satisfy a skew orthogonality relation with respect to a stronger moment functional. Many of the properties of the numerators and denominators of an M- fraction are also studied using this pseudo orthogonality relation of the denominator polynomials. Properties of the zeros of the denominator polynomials when the associated moment functional is positive definite are also considered. A type of continued fraction, referred to as a J-fraction, is shown to correspond to a power series about the origin and to another power series about infinity such that the successive convergents of this fraction include two more additional terms of anyone of the power series. Given the power series expansions, a method of obtaining such a J-fraction, whenever it exists, is also looked at. The first complete proof of the so called strong Hamburger moment problem using a continued fraction is given. In this case the continued fraction is a J-fraction. Finally a special class of J-fraction, referred to as positive definite J-fractions, is studied in detail. The four chapters of this thesis are divided into sections. Each section is given a section number which is made up of the chapter number followed by the number of the section within the chapter. The equations in the thesis have an equation number consisting of the section number followed by the number of the equation within that section. In Chapter One, in addition to looking at some of the historical and recent developments of corresponding continued fractions and their applications, we also present some preliminaries. Chapter Two deals with a different approach of understanding the properties of the numerators and denominators of corresponding (two point) rational functions and, continued fractions. This approach, which is based on a pseudo orthogonality relation of the denominator polynomials of the corresponding rational functions, provides an insight into understanding the moment problems. In particular, results are established which suggest a possible type of continued fraction for solving the strong Hamburger moment problem. In the third chapter we study in detail the existence conditions and corresponding properties of this new type of continued fraction, which we call J-fractions. A method of derivation of one of these 3-fractions is also considered. In the same chapter we also look at the all important application of solving the strong Hamburger moment problem, using these 3-fractions. The fourth and final chapter is devoted entirely to the study of the convergence behaviour of a certain class of J-fractions, namely positive definite J-fractions. This study also provides some interesting convergence criteria for a real and regular 3-fraction. Finally a word concerning the literature on continued fractions and moment problems. The more recent and up-to-date exposition on the analytic theory of continued fractions and their applications is the text of Jones and Thron [1980]. The two volumes of Baker and Graves-Morris [1981] provide a very good treatment on one of the computational aspects of the continued fractions, namely Pade approximants. There are also the earlier texts of Wall [1948] and Khovanskii [1963], in which the former gives an extensive insight into the analytic theory of continued fractions while the latter, being simpler, remains the ideal book for the beginner. In his treatise on Applied and Computational Complex Analysis, Henrici [1977] has also included an excellent chapter on continued fractions. Wall [1948] also includes a few chapters on moment problems and related areas. A much wider treatment of the classical moment problems is provided in the excellent texts of Shohat and Tamarkin [1943] and Akhieser [1965].
|
262 |
Relations between logic and mathematics in the work of Benjamin and Charles S. PeirceWalsh, Alison January 1999 (has links)
Charles Peirce (1839-1914) was one of the most important logicians of the nineteenth century. This thesis traces the development of his algebraic logic from his early papers, with especial attention paid to the mathematical aspects. There are three main sources to consider. 1) Benjamin Peirce (1809-1880), Charles's father and also a leading American mathematician of his day, was an inspiration. His memoir Linear Associative Algebra (1870) is summarised and for the first time the algebraic structures behind its 169 algebras are analysed in depth. 2) Peirce's early papers on algebraic logic from the late 1860s were largely an attempt to expand and adapt George Boole's calculus, using a part/whole theory of classes and algebraic analogies concerning symbols, operations and equations to produce a method of deducing consequences from premises. 3) One of Peirce's main achievements was his work on the theory of relations, following in the pioneering footsteps of Augustus De Morgan. By linking the theory of relations to his post-Boolean algebraic logic, he solved many of the limitations that beset Boole's calculus. Peirce's seminal paper 'Description of a Notation for the Logic of Relatives' (1870) is analysed in detail, with a new interpretation suggested for his mysterious process of logical differentiation. Charles Peirce's later work up to the mid 1880s is then surveyed, both for its extended algebraic character and for its novel theory of quantification. The contributions of two of his students at the Johns Hopkins University, Oscar Mitchell and Christine Ladd-Franklin are traced, specifically with an analysis of their problem solving methods. The work of Peirce's successor Ernst Schröder is also reviewed, contrasting the differences and similarities between their logics. During the 1890s and later, Charles Peirce turned to a diagrammatic representation and extension of his algebraic logic. The basic concepts of this topological twist are introduced. Although Peirce's work in logic has been studied by previous scholars, this thesis stresses to a new extent the mathematical aspects of his logic - in particular the algebraic background and methods, not only of Peirce but also of several of his contemporaries.
|
263 |
On the geometry of certain 4 - manifoldsKotschick, Dieter January 1989 (has links)
No description available.
|
264 |
Computer algebra techniques in object-oriented mathematical modellingMitic, Peter January 1999 (has links)
No description available.
|
265 |
Mobius inversion of some classical groups and their application to the enumeration of regular hypermapsDowns, M. L. N. January 1988 (has links)
No description available.
|
266 |
p-Fold intersection points and their relation with #pi#'s(MU(n))Mitchell, W. P. R. January 1986 (has links)
No description available.
|
267 |
Automorphism groups of geometric codesIannone, Paola January 1995 (has links)
No description available.
|
268 |
Discrete groups, analytic groups and Poincare seriesDu Sautoy, M. P. F. January 1989 (has links)
No description available.
|
269 |
Semantics of non-terminating systems through term rewritingBarros, Jose Bernado dos Santos Monteiro Vieira de January 1995 (has links)
No description available.
|
270 |
Chip Firing Games and Riemann-Roch Properties for Directed GraphsGaslowitz, Joshua Z 01 May 2013 (has links)
The following presents a brief introduction to tropical geometry, especially tropical curves, and explains a connection to graph theory. We also give a brief summary of the Riemann-Roch property for graphs, established by Baker and Norine (2007), as well as the tools used in their proof. Various generalizations are described, including a more thorough description of the extension to strongly connected directed graphs by Asadi and Backman (2011). Building from their constructions, an algorithm to determine if a directed graph has Row Riemann-Roch Property is given and thoroughly explained.
|
Page generated in 0.0305 seconds