311 |
Algebraische Zykel auf Hilbertschen ModulflächenKoehl, Jürgen. January 1987 (has links)
Inaug.-Diss.--Rheinsche Friedrich-Wilhelms-Universität, 1986. / Bibliography: p. 101-104.
|
312 |
A Hecke ring of split reductive groups over a number fieldBruggeman, Roelof Wichert. January 1972 (has links)
Thesis--Rijksunivers teit te Utrecht. / Includes bibliographical references (p. 103-104).
|
313 |
Arithmetical compactification of mixed Shimura varietiesPink, Richard. January 1989 (has links)
Thesis (Doctoral)--Rheinische Friedrich-Wilhelms-Universität Bonn, 1990. / Includes bibliographical references.
|
314 |
Kohomologie spezieller S-arithmetischer Gruppen und ModulformenKühnlein, Stefan. January 1994 (has links)
Thesis (doctoral)--Universität Bonn, 1993. / Includes bibliographical references (p. 68-71).
|
315 |
Commutative semifields of odd order and planar Dembowski-Ostrom polynomialsKosick, Pamela. January 2010 (has links)
Thesis (Ph.D.)--University of Delaware, 2010. / Principal faculty advisor: Robert Coulter, Dept. of Mathematical Sciences. Includes bibliographical references.
|
316 |
Das Normalenproblem an Kurven und flächen zweiter Ordnung in den endlichen RaumformenKraft, Kuno, January 1911 (has links)
Inaug.-diss.-Münster i. W.
|
317 |
On singularities of generic projection hypersurfaces /Doherty, Davis C. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 63-66).
|
318 |
The Distribution of the Irreducibles in an Algebraic Number FieldRozario, Rebecca January 2003 (has links) (PDF)
No description available.
|
319 |
Determination of Quadratic Lattices by Local Structure and Sublattices of Codimension OneMeyer, Nicolas David 01 May 2015 (has links)
For definite quadratic lattices over the rings of integers of algebraic number fields, it is shown that lattices are determined up to isometry by their local structure and sublattices of codimension 1. In particular, a theorem of Yoshiyuki Kitaoka for $\mathbb{Z}$-lattices is generalized to definite lattices over algebraic number fields.
|
320 |
An easy and remarkable inequality derived from (actually equivalent to) Fermat's last theoremGómez-Sánchez A., Luis 25 September 2017 (has links)
A remarkable inequality among integer numbers is given. Easily deduced from Fermat's Last Theorem, it would be nevertheless very difficult to establish through other means.
|
Page generated in 0.0456 seconds