331 |
Mordell-Weil theorem and the rank of elliptical curvesKhalfallah, Hazem 01 January 2007 (has links)
The purpose of this thesis is to give a detailed group theoretic proof of the rank formula in a more general setting. By using the proof of Mordell-Weil theorem, a formula for the rank of the elliptical curves in certain cases over algebraic number fields can be obtained and computable.
|
332 |
Reality and Computation in Schubert CalculusHein, Nickolas Jason 16 December 2013 (has links)
The Mukhin-Tarasov-Varchenko Theorem (previously the Shapiro Conjecture) asserts that a Schubert problem has all solutions distinct and real if the Schubert varieties involved osculate a rational normal curve at real points. When conjectured, it sparked interest in real osculating Schubert calculus, and computations played a large role in developing the surrounding theory. Our purpose is to uncover generalizations of the Mukhin-Tarasov-Varchenko Theorem, proving them when possible. We also improve the state of the art of computationally solving Schubert problems, allowing us to more effectively study ill-understood phenomena in Schubert calculus.
We use supercomputers to methodically solve real osculating instances of Schubert problems. By studying over 300 million instances of over 700 Schubert problems, we amass data significant enough to reveal generalizations of the Mukhin-Tarasov- Varchenko Theorem and compelling enough to support our conjectures. Combining algebraic geometry and combinatorics, we prove some of these conjectures. To improve the efficiency of solving Schubert problems, we reformulate an instance of a Schubert problem as the solution set to a square system of equations in a higher- dimensional space.
During our investigation, we found the number of real solutions to an instance of a symmetrically defined Schubert problem is congruent modulo four to the number of complex solutions. We proved this congruence, giving a generalization of the Mukhin-Tarasov-Varchenko Theorem and a new invariant in enumerative real algebraic geometry. We also discovered a family of Schubert problems whose number of real solutions to a real osculating instance has a lower bound depending only on the number of defining flags with real osculation points.
We conclude that our method of computational investigation is effective for uncovering phenomena in enumerative real algebraic geometry. Furthermore, we point out that our square formulation for instances of Schubert problems may facilitate future experimentation by allowing one to solve instances using certifiable numerical methods in lieu of more computationally complex symbolic methods. Additionally, the methods we use for proving the congruence modulo four and for producing an
|
333 |
Homology Of Real Algebraic Varieties And Morphisms To SpheresOzturk, Ali 01 August 2005 (has links) (PDF)
abstract
HOMOLOGY OF REAL ALGEBRAIC VARIETIES AND
MORPHISMS TO SPHERES
¨ / OZT¨ / URK, Ali
Ph.D., Department of Mathematics
Supervisor: Assoc. Prof. Dr. Yildiray OZAN
August 2005, 24 pages
Let X and Y be affine nonsingular real algebraic varieties. One of the classical
problems in real algebraic geometry is whether a given C1 mapping f : X ! Y
can be approximated by regular mappings in the space of C1 mappings. In this
thesis, we obtain some sufficient conditions in the case when Y is the standard
sphere Sn.
In the second part of the thesis, we study mainly the kernel of the induced map
on homology i : Hk(X,R) ! Hk(XC,R), where i : X ! XC is a nonsingular
projective complexification. First, using Lefshcetz Hyperplane Section Theorem
we study KHk(X H,R), where H is a hyperplane. In the remaining part, we
relate KHk(X,R) to the realization of cohomology classes of XC by harmonic
forms.
|
334 |
Riemann Roch Theorem For Algebraic CurvesRajeev, B 03 1900 (has links) (PDF)
No description available.
|
335 |
Borsuk-Ulam Theorem And Its Equivalent FormulationsBharat, Gupta Sunny 03 1900 (has links) (PDF)
No description available.
|
336 |
Oriented Cohomology Rings of the Semisimple Linear Algebraic Groups of Ranks 1 and 2Gandhi, Raj 23 August 2021 (has links)
In this thesis, we compute minimal presentations in terms of generators and relations for the oriented cohomology rings of several semisimple linear algebraic groups of ranks 1 and 2 over algebraically closed fields of characteristic 0. The main tools we use in this thesis are the combinatorics of Coxeter groups and formal group laws, and recent results of Calm\`es, Gille, Petrov, Zainoulline, and Zhong, which relate the oriented cohomology rings of flag varieties and semisimple linear algebraic groups to the dual of the formal affine Demazure algebra.
|
337 |
Contributions to the theory of nearness in pointfree topologyMugochi, Martin Mandirevesa 09 1900 (has links)
We investigate quotient-fine nearness frames, showing that they are reflective in the category
of strong nearness frames, and that, in those with spatial completion, any near subset
is contained in a near grill. We construct two categories, each of which is shown to be
equivalent to that of quotient-fine nearness frames. We also consider some subcategories of
the category of nearness frames, which are co-hereditary and closed under coproducts. We
give due attention to relations between these subcategories. We introduce totally strong
nearness frames, whose category we show to be closed under completions. We investigate
N-homomorphisms and remote points in the context of totally bounded uniform frames,
showing the role played by these uniform N-homomorphisms in the transfer of remote
points, and their relationship with C -quotient maps. A further study on grills enables
us to establish, among other things, that grills are precisely unions of prime filters. We
conclude the thesis by showing that the lattice of all nearnesses on a regular frame is a
pseudo-frame, by which we mean a poset pretty much like a frame except for the possible
absence of the bottom element. / Mathematical Sciences / Ph.D. (Mathematics)
|
338 |
Satake compactifications, lattices and Schottky problemCodogni, Giulio January 2014 (has links)
No description available.
|
339 |
Linear coordinates, test elements, retracts and automorphic orbitsGong, Shengjun., 龔勝軍. January 2008 (has links)
published_or_final_version / Mathematics / Doctoral / Doctor of Philosophy
|
340 |
Cobordism categoriesCarmody, Sean Michael January 1995 (has links)
No description available.
|
Page generated in 0.0267 seconds