401 |
Essential surfaces in hyperbolic three-manifoldsLeininger, Christopher Jay 28 April 2011 (has links)
Not available / text
|
402 |
The Knaster-Kuratowski-Mazurkiewicz theorem and abstract convexitiesGonzalez Espinoza, Luis 05 1900 (has links)
No description available.
|
403 |
A binary dynamic programming problem with affine transitions and reward functions : properties and algorithmGatica, Ricardo A. 12 1900 (has links)
No description available.
|
404 |
Moduli Spaces of K3 Surfaces with Large Picard NumberHARDER, ANDREW 15 August 2011 (has links)
Morrison has constructed a geometric relationship between K3 surfaces with large Picard number and abelian surfaces. In particular, this establishes that the period spaces of certain families of lattice polarized K3 surfaces (which are closely related to the moduli spaces of lattice polarized K3 surfaces) and lattice polarized abelian surfaces are identical. Therefore, we may study the moduli spaces of such K3 surfaces via the period spaces of abelian surfaces.
In this thesis, we will answer the following question: from the moduli space of abelian surfaces with endomorphism structure (either a Shimura curve or a Hilbert modular surface), there is a natural map into the moduli space of abelian surfaces, and hence into the period space of abelian surfaces. What sort of relationship exists between the moduli spaces of abelian surfaces with endomorphism structure and the moduli space of lattice polarized K3 surfaces? We will show that in many cases, the endomorphism ring of an abelian surface is just a subring of the Clifford algebra associated to the N\'eron-Severi lattice of the abelian surface. Furthermore, we establish a precise relationship between the moduli spaces of rank 18 polarized K3 surfaces and Hilbert modular surfaces, and between the moduli spaces of rank 19 polarized K3 surfaces and Shimura curves.
Finally, we will calculate the moduli space of E_8^2 + <4>-polarized K3 surfaces as a family of elliptic K3 surfaces in Weierstrass form and use this new family to find families of rank 18 and 19 polarized K3 surfaces which are related to abelian surfaces with real multiplication or quaternionic multipliction via the Shioda-Inose construction. / Thesis (Master, Mathematics & Statistics) -- Queen's University, 2011-08-12 14:38:04.131
|
405 |
Representability of Algebraic CHOW Groups of Complex Projective Complete Intersections and Applications to MotivesTuncer, Serhan Unknown Date
No description available.
|
406 |
On estimating fractal dimensionDubuc, Benoit January 1988 (has links)
No description available.
|
407 |
Clifford-Fischer theory applied to certain groups associated with symplectic, unitary and Thompson groups.Basheer, Ayoub Basheer Mohammed. January 2012 (has links)
The character table of a finite group is a very powerful tool to study the groups and to prove
many results. Any finite group is either simple or has a normal subgroup and hence will be of
extension type. The classification of finite simple groups, more recent work in group theory, has
been completed in 1985. Researchers turned to look at the maximal subgroups and automorphism
groups of simple groups. The character tables of all the maximal subgroups of the sporadic simple
groups are known, except for some maximal subgroups of the Monster M and the Baby Monster B.
There are several well-developed methods for calculating the character tables of group extensions
and in particular when the kernel of the extension is an elementary abelian group. Character
tables of finite groups can be constructed using various theoretical and computational techniques.
In this thesis we study the method developed by Bernd Fischer and known nowadays as the theory
of Clifford-Fischer matrices. This method derives its fundamentals from the Clifford theory. Let
G = N·G, where N C G and G/N = G, be a group extension. For each conjugacy class [gi]G, we
construct a non-singular square matrix Fi, called a Fischer matrix. Once we have all the Fischer
matrices together with the character tables (ordinary or projective) and fusions of the inertia factor
groups into G, the character table of G is then can be constructed easily. In this thesis we apply
the coset analysis technique (this is a method to find the conjugacy classes of group extensions)
together with theory of Clifford-Fischer matrices to calculate the ordinary character tables of seven
groups of extensions type, in which four are non-split and three are split extensions. These groups
are of the forms: 21+8
+
·A9, 37:Sp(6, 2), 26·Sp(6, 2), 25·GL(5, 2), 210:(U5(2):2), 21+6
− :((31+2:8):2)
and 22n·Sp(2n, 2) and 28·Sp(8, 2). In addition we give some general results on the non-split group 22n·Sp(2n, 2). / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
|
408 |
Some singularity theorems in Lorentzian geometryTellier, Raymond. January 1983 (has links)
No description available.
|
409 |
Graphs of Given Order and Size and Minimum Algebraic ConnectivityBiyikoglu, Türker, Leydold, Josef 10 1900 (has links) (PDF)
The structure of connected graphs of given size and order that have minimal algebraic connectivity is investigated. It is shown that they must consist of a chain of cliques. Moreover, an upper bound for the number of maximal cliques of size 2 or larger is derived. (author's abstract) / Series: Research Report Series / Department of Statistics and Mathematics
|
410 |
Hall algebras and Green ringsArcher, Louise January 2005 (has links)
This thesis consists of two parts, both of which involve the study of algebraic structures constructed via the multiplication of modules. In the first part we look at Hall algebras. We consider the Hall algebra of a cyclic quiver algebra with relations of length two and present a multiplication formula for the explicit calculation of products in this algebra. We then look at the case of a cyclic quiver with two vertices and describe the corresponding composition algebra as a quotient of the positive part of a quantised enveloping algebra of type Ã<sub>1</sub> We then look at quotients of Hall algebras of self-injective algebras. We give an abstract result describing the quotient of such a Hall algebra by the ideal generated by isomorphism classes of projective modules, and also a more explicit result describing quotients of Hall algebras of group algebras for cyclic 2-groups and some related polynomial algebras. The second part of the thesis deals with Green rings. We compare the Green rings of a group algebra and the corresponding Jennings algebra for certain p-groups. It is shown that these two Green rings are isomorphic in the case of a cyclic p-group. In the case of the Klein four group it is shown that the two Green rings are not isomorphic, but that there exist quotients of these rings which are isomorphic. It is conjectured that the corresponding quotients will also be isomorphic in the case of a dihedral 2-group. The properties of these quotients are studied, with the aim of producing evidence to support this conjecture. The work on Green rings also includes some results on the realisation of quotients of Green rings as group rings over ℤ.
|
Page generated in 0.0595 seconds