• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 102
  • 44
  • 15
  • 12
  • 8
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 347
  • 84
  • 51
  • 51
  • 38
  • 35
  • 34
  • 32
  • 31
  • 30
  • 25
  • 22
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Tissue engineering approaches for brain injury applications

Speccher, Alessandra 26 May 2020 (has links)
Due to the limited regenerative capacity of the central nervous system (CNS) upon injury, regenerative medicine and tissue engineering strategies show great promise for treatment. These aim to restore tissue functions by combining principles of cell biology and engineering, using biomaterial scaffolds which can help in recapitulating the 3D environment of the brain and improving cell survival after grafting. Stroke and TBI are severe forms of disruptions of brain architecture, and two of the leading causes of mortality and morbidity worldwide, as no effective treatments are available. Several studies report how neural stem cells (NSCs) are able to improve functional recovery upon transplantation. However, the efficacy of these treatments is limited because of the mortality these cells are subject to after transplantation. In this context, the transplantation of mesenchymal cells (MSCs) has shown beneficial effects by secreting molecules and factors that help in the healing process. In this study, we tested alginate-based hydrogels as candidates to support human NSCs and MSCs transplantation into the brain, in the view of exploiting the beneficial effects of both and analyzing whether their combined use could have a synergistic effect. In the first part, we studied the suitability of alginate-based scaffolds for the three-dimensional encapsulation and culture of hNSCs and hMSCs. We analyzed their ability to support cell survival, and we evaluated whether changes in their concentration or modifications with ECM molecules could influence cell viability. We showed that the best survival conditions are found when using an RGDs-functionalized alginate scaffold at a low concentration (0.5% w/v). We then worked on the identification of the best conditions for MSCs culture and the definition of coculture conditions. Since serum is necessary for MSCs, but it is reported to induce glial differentiation of NSCs, we explored two different experimental setups. On one hand, we investigated the feasibility to exploit biomaterials to create "compartmentalized" cocultures that would at least partially retain serum. In parallel, we positively observed that MSCs can survive, proliferate and maintain their stemness even in absence of serum, supporting the hypothesis that the use of “compartmentalized” coculture systems would likely be exploitable for MSCs culture. Finally, we tested the reported beneficial effects of MSCs in our 3D culture system, in which NSCs do not show a great viability. Encapsulated NSCs were cultured on an MSCs monolayer, and we analyzed cell survival, proliferation, differentiation and stemness retention. Gene expression analyses highlighted that NSCs maintain stemness characteristics, but we were not able to observe any improvement in NSCs survival in coculture, with respect to standard culture. In the last part of the project we decided to test our system for tissue engineering approaches, exploiting axotomized brain organotypic slices (OSCs). We evaluated the presence of cells 7 days after transplantation, their integration in the OSCs and glial response. Preliminary results suggest that the biomaterial does not cause activation of glial cells, although stem cells do not seem to migrate out of scaffold and integrate into the brain slice.
212

A mussel-inspired antibacterial hydrogel with high cell affinity, toughness, self-healing, and recycling properties for wound healing

Deng, X., Huang, B., Wang, Q., Wu, W., Coates, Philip D., Sefat, Farshid, Lu, C., Zhang, W., Zhang, X. 22 February 2021 (has links)
Yes / Antibacterial hydrogels have been intensively studied due to their wide practical potential in wound healing. However, developing an antibacterial hydrogel that is able to integrate with exceptional mechanical properties, cell affinity, and adhesiveness will remain a major challenge. Herein, a novel hydrogel with antibacterial and superior biocompatibility properties was developed using aluminum ions (Al3+) and alginate− dopamine (Alg-DA) chains to cross-link with the copolymer chains of acrylamide and acrylic acid (PAM) via triple dynamic noncovalent interactions, including coordination, electrostatic interaction, and hydrogen bonding. The cationized nanofibrillated cellulose (CATNFC), which was synthesized by the grafting of long-chain quaternary ammonium salts onto nanofibrillated cellulose (NFC), was utilized innovatively in the preparation of antibacterial hydrogels. Meanwhile, alginate-modified dopamine (Alg-DA) was prepared from dopamine (DA) and alginate. Within the hydrogel, the catechol groups of Alg-DA provided a decent fibroblast cell adhesion to the hydrogel. Additionally, the multitype cross-linking structure within the hydrogel rendered the outstanding mechanical properties, self-healing ability, and recycling in pollution-free ways. The antibacterial test in vitro, cell affinity, and wound healing proved that the as-prepared hydrogel was a potential material with all-around performances in both preventing bacterial infection and promoting tissue regeneration during wound healing processes. / This work was supported by the National Natural Science Foundation of China (32070826 and 51861165203), the Chinese Postdoctoral Science Foundation (2019M650239, 2020T130762), the Sichuan Science and Technology Program (2019YJ0125), the State Key Laboratory of Polymer Materials Engineering (sklpme2019-2-19), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0807), Chongqing Medical Joint Research Project of Chongqing Science and Technology Committee & Health Agency (2020GDRC017), and the RCUK China-UK Science Bridges Program through the Medical Research Council, and the Fundamental Research Funds for the Central Universities.
213

Quantifying diffusion in biofilms : from model hydrogels to living biofilms

Golmohamadi, Mahmood 07 1900 (has links)
Les biofilms sont des communautés de microorganismes incorporés dans une matrice exo-polymérique complexe. Ils sont reconnus pour jouer un rôle important comme barrière de diffusion dans les systèmes environnementaux et la santé humaine, donnant lieu à une résistance accrue aux antibiotiques et aux désinfectants. Comme le transfert de masse dans un biofilm est principalement dû à la diffusion moléculaire, il est primordial de comprendre les principaux paramètres influençant les flux de diffusion. Dans ce travail, nous avons étudié un biofilm de Pseudomonas fluorescens et deux hydrogels modèles (agarose et alginate) pour lesquels l’autodiffusion (mouvement Brownien) et les coefficients de diffusion mutuels ont été quantifiés. La spectroscopie par corrélation de fluorescence a été utilisée pour mesurer les coefficients d'autodiffusion dans une volume confocal de ca. 1 m3 dans les gels ou les biofilms, tandis que les mesures de diffusion mutuelle ont été faites par cellule de diffusion. En outre, la voltamétrie sur microélectrode a été utilisée pour évaluer le potentiel de Donnan des gels afin de déterminer son impact sur la diffusion. Pour l'hydrogel d'agarose, les observations combinées d'une diminution du coefficient d’autodiffusion et de l’augmentation de la diffusion mutuelle pour une force ionique décroissante ont été attribuées au potentiel de Donnan du gel. Des mesures de l'effet Donnan (différence de -30 mV entre des forces ioniques de 10-4 et 10-1 M) et l'accumulation correspondante d’ions dans l'hydrogel (augmentation d’un facteur de 13 par rapport à la solution) ont indiqué que les interactions électrostatiques peuvent fortement influencer le flux de diffusion de cations, même dans un hydrogel faiblement chargé tel que l'agarose. Curieusement, pour un gel plus chargé comme l'alginate de calcium, la variation de la force ionique et du pH n'a donné lieu qu'à de légères variations de la diffusion de sondes chargées dans l'hydrogel. Ces résultats suggèrent qu’en influençant la diffusion du soluté, l'effet direct des cations sur la structure du gel (compression et/ou gonflement induits) était beaucoup plus efficace que l'effet Donnan. De même, pour un biofilm bactérien, les coefficients d'autodiffusion étaient pratiquement constants sur toute une gamme de force ionique (10-4-10-1 M), aussi bien pour des petits solutés chargés négativement ou positivement (le rapport du coefficient d’autodiffusion dans biofilm sur celui dans la solution, Db/Dw ≈ 85 %) que pour des nanoparticules (Db/Dw≈ 50 %), suggérant que l'effet d'obstruction des biofilms l’emporte sur l'effet de charge. Les résultats de cette étude ont montré que parmi les divers facteurs majeurs qui affectent la diffusion dans un biofilm environnemental oligotrophe (exclusion stérique, interactions électrostatiques et hydrophobes), les effets d'obstruction semblent être les plus importants lorsque l'on tente de comprendre la diffusion du soluté. Alors que les effets de charge ne semblaient pas être importants pour l'autodiffusion de substrats chargés dans l'hydrogel d'alginate ou dans le biofilm bactérien, ils ont joué un rôle clé dans la compréhension de la diffusion à travers l’agarose. L’ensemble de ces résultats devraient être très utiles pour l'évaluation de la biodisponibilité des contaminants traces et des nanoparticules dans l'environnement. / Biofilms are primarily communities of microorganisms embedded in a complex exopolymer matrix. They are thought to play an important role as diffusive barriers in environmental systems and human health, resulting in increased resistance to disinfectants and antibiotics. Since mass transport in a biofilm is primarily due to molecular diffusion, it is critical to understand the main parameters influencing diffusive fluxes in a biofilm. In this thesis, a Pseudomonas fluorescens biofilm and two model hydrogels, (agarose and calcium alginate), were investigated. Both self-diffusion (Brownian motion) and mutual diffusion coefficients were quantified. Fluorescence correlation spectroscopy was used to measure the self-diffusion coefficients in a ca. 1 m3 confocal volume in the gels or biofilms, whereas a diffusion cell setup was employed for mutual diffusion measurements. In addition, microelectrode voltammetry was used to evaluate Donnan potential of the gels in order to determine its impact on diffusion. For the agarose hydrogel, the combined observations of a decreasing self-diffusion coefficient coupled with increasing mutual diffusion as a function of a decreasing ionic strength have been attributed to the gel’s Donnan potential. Measurements of the Donnan effect (difference of -30 mV between ionic strengths of 10-4 and 10-1 M) and the corresponding accumulation of ions in the hydrogel (13x enhancement with respect to the bulk solution) indicated that electrostatic interactions can strongly influence the diffusive flux of cations, even in a weakly charged hydrogel, such as agarose. Somewhat surprisingly, for a more highly charged gel such as calcium alginate, varying ionic strength and pH resulted in only small changes to the diffusion of charged probes in the hydrogel. These results suggested that the direct effect of the cations on gel structure (due to an induced swelling or compression) was much more effective than the Donnan effect when influencing solute diffusion. Similarly, for a bacterial biofilm, self-diffusion coefficients were virtually constant across a range of examined ionic strengths (10-4-10-1 M) for both negatively and positively charged small solutes (Db/Dw≈85%) and nanoparticles (Db/Dw≈50%), suggesting that the obstruction effect of the biofilms again overwhelmed the charge effect. The results of this work indicated that among the various major factors affecting diffusion in an oligotrophic environmental biofilm (steric exclusion, hydrophobic and electrostatic interactions), obstruction effects appeared to be the most important when attempting to understand the solute diffusion. While charge effects did not appear to be important to the self-diffusion of charged substrates in the alginate hydrogel or bacterial biofilm, they were key to understanding diffusion through another gel, with numerous biomedical and environmental applications, i.e. agarose. These results should be extremely useful when evaluating the bioavailability of the trace contaminants and nanoparticles in the environment.
214

Catalyseurs hétérogènes à base de polysaccharides pour des réactions pallado-catalysées / Heterogeneous catalysts based on polysaccharides for palladium-catalyzed reactions

Ouchaou, Kahina 09 November 2012 (has links)
Les travaux de thèse présentés dans ce manuscrit portent essentiellement sur la préparation, le criblage et l’utilisation des catalyseurs hétérogènes à base de polysaccharides. L’objectif principal du projet de thèse a plus particulièrement consisté à évaluer deux polysaccharides : les alginates et le chitosane en tant que supports renouvelables pour la catalyse hétérogène. Ces deux types de polysaccharides ont des structures et des propriétés physico-chimiques très différentes : les alginates sont connus pour être de bons complexants de métaux di ou trivalents de par la présence des fonctions carboxylates dans leur matrice, le chitosane résulte quant à lui de l’assemblage d’unités N-glucosamine pouvant être facilement modifiées chimiquement.Dans un premier temps, nos travaux ont essentiellement portés sur des catalyseurs bimétalliques Mn+ Pd supportés sur alginate dont nous avons évalué l’activité catalytique dans les réactions de couplage C—C de Mizoroki-Heck, Sonogashira et Suzuki-Miyaura. D’une manière générale, seuls les catalyseurs à base de nanoparticules de palladium ont montré une réactivité intéressante pour la catalyse de la réaction de Suzuki-Miyaura. Par la suite, nous avons également étudié les réactions d’oxydations d’alcools catalysées par du palladium (II) complexé à l’alginate. Cette étude nous a permis d’identifier deux catalyseurs actifs vis-à-vis de l’oxydation d’alcools allyliques et benzyliques.Dans un deuxième temps, nous avons développé de nouveaux ligands de type NHC en vue de les greffer sur la matrice chitosane : un ligand NHC pour les réactions de métathèse d’oléfines, et plusieurs ligands NHC de type pincer CNC pour les réactions de couplage C—C dans l’eau. Bien que les performances catalytiques des systèmes hétérogènes correspondant soient limitées, ces travaux ont conduit à l’élaboration de nouveaux ligands amphiphiles construits autour d’un noyau pyrazine porteurs de quatre ligands carbéniques. Après complexation de métaux tels que le palladium ou l’or, ces systèmes conduisent à des nanocatalyseurs ayant des performances catalytiques intéressantes. Enfin, dans un troisième temps, nous avons développé une nouvelle réaction de cyanation décarboxylante pallado-catalysée permettant de transformer en une étape des acides carboxyliques aromatiques en benzonitriles correspondants. Outre son intérêt synthétique, cette réaction présente un grand intérêt pour le marquage isotopique. / This work describes the preparation, screening and use of heterogeneous catalysts based on polysaccharides. The main goal of our project was to evaluate two polysaccharides: alginates and chitosan as renewable supports for heterogeneous catalysis.Alginates are known to form gels with most di- and multivalent cations due to the presence of the carboxylate functions of their matrix. And chitosan is an attractive polysaccharide for application in catalysis owing to the presence of readily functionalizable amino group and its insolubility in organic solvents.First, our work focused on evaluating the catalytic activity of bimetallic Mn+-Pd catalysts supported on alginate in C—C coupling reactions. Among them, one system demonstrated remarkable catalytic properties for the Suzuki-Miyaura coupling. Then, the oxidation of alcohols catalyzed by Alginate-Mn+-Pd2+ catalyst was investigated. Two catalysts demonstrated good activity for oxidation of benzylic and allylic alcohol.In a second time, we developed new NHC ligands in order to anchor them on chitosan: two new NHC ligands for olefin metathesis and several NHC pincer CNC ligands for C—C coupling reactions in water. A palladium complex obtained with one our new ligand bearing long alkyl chains showed good activity in the Suzuki-Miyaura coupling in pure water.Finally, a new palladium (II) catalyzed decarboxylative cyanation reaction was investigated. This methodology is the first example of direct conversion of aryl carboxylic acid into the corresponding aryl nitrile. This reaction is well adapted to labeled compound synthesis.
215

Colloidal Gold Nanoparticules : A study of their Drying-Mediated Assembly in Mesoscale Aggregation Patterns and of their AFM Assisted Nanomanipulation on Model Solid Surfaces / Nanoparticules d'or colloïdales : Etude de leur assemblage en structures d'agrégation mésoscopiques assisté par le séchage et de leur manipulation par AFM sur des surfaces modèles

Darwich, Samer 14 December 2011 (has links)
Élaborer ou structurer des matériaux à l’échelle nanométrique permet d’aborder une physique nouvelle mais également de réaliser des dispositifs fonctionnant sur des principes originaux utilisées dans divers domaines (médecine, énergie, électronique, optique, catalyse..). Ce travail porte sur l’étude de l’assemblage des nanoparticules d’or colloïdales (NPs) en structures d’agrégation mésoscopiques, assisté par le séchage des fluides complexes et de leur manipulation par Microscope à Force Atomique (AFM) sur des surfaces modèles. Une première partie présente la synthèse des NPs d’or et des surfaces moléculaires auto-assemblées sur des substrats rigides. Ensuite, l’étude de la formation des structures d’agrégation assistée par le mouillage et le séchage des fluides complexes ( NPs et polysaccharide) sur des surfaces moléculaires a permis de mettre en évidence le rôle crucial du couplage entre les propriétés de volume singulières de ces fluides, et celles de surface du substrat dans la formation de structures d’agrégation complexes (fractales, et dendrites en particulier). Dans un troisième temps, les travaux abordent à l’étude et la compréhension du vieillissement (dégénérescence et reconstruction) des structures mésoscopiques élaborées. Entre autres résultats, ces travaux ont mis en évidence la nature ‘diffusionnelle’ de la dislocation des structures, laquelle se traduit par la mobilité d’agrégats nanoparticulaires en surface. Afin de mieux appréhender cette problématique de mobilité individuelle et/ou collective (cluster) des NPs, une étude détaillée basée sur la manipulation des NPs par AFM en mode Tapping a été réalisée. L’ensemble des résultats obtenus au cours de ce travail de thèse a permis d’une part, i) de proposer de nouvelles approches d’assemblage de macromolécules et de particules, assisté par les phénomènes de mouillage, ii) de comprendre les mécanismes à l’origine de la formation de ces structures d’agrégation complexes (fractales compactes et fibrillaires) sur des substrats homogènes et hétérogènes, et d’autre part, iii) de contrôler la stabilité et le vieillissement de ces structures d’agrégation complexes en vue d’une validation de la fiabilité éventuelle de nanomatériaux issus d’assemblages à base de NPs. / This work deals with the study of the drying-mediated assembly of colloidal gold nanoparticles (Au NPs) in mesoscale aggregation patterns and their manipulation by atomic force microscopy (AFM) on model surfaces. The assembly of NPs in mesoscale and complex aggregation patterns assisted by the wetting and the drying of complex fluids (suspensions of NPs, NPs/biopolymers mixed solutions) on homogeneous and heterogeneous molecular surfaces was studied. This issue is important, both for understanding fundamental processes of self-organization, and for generating new functional mesostructures. The drying of complex fluids often leads to the emergence of highly complex aggregation structures as shown and discussed in this work. The richness and the aesthetics of these complex structures generated by these interfacial phenomena reflect not only the bulk properties of fluids (different sizes and lengths- scales, kinetic changes in state), but more importantly, the coupling between the fluid properties and those of the substrate surface (wetting interactions, confinement, hydrodynamics). In the case of two important heterogeneous fluids which are Au NPs and polysaccharide solutions, these drying-mediated structure formation lead to the genesis of unusually large and highly ramified dendrites aggregation patterns. The growth mechanism and the critical parameters that control the morphogenesis of these complexes structures are addressed in this work. In addition, the aging mechanisms and kinetics of these structures that are metastable and evolve either through direct dislocation via clusters NPs mobility on the surface, or through undulation-induced roughning of the dendrite branches. To better understanding this NPs mobility and thus the dislocation mechanism of the aging, a detailed study based on the manipulation of NPs by atomic force microscopy in tapping mode (AFM) was developed. The threshold dissipated energy to manipulate (move) the NPs can be quantified according to the intrinsic parameters of the particle (size, shape, and chemical nature), the chemical nature and topography of the substrate, and finally the operating and environment conditions. This work enabled us to understand the mechanisms and characterize the critical parameters that may intervene in the dislocation (aging) of NPs-based functional structures, depending on the nature of the environment liquid and the substrate. Finally, this work proposes an approch of evaluation and of monitoring the stability and the aging of these aggregation structures, in particular, those formed from the drying of films and drops of nano-particles solutions (metal nanoparticles, blood: proteins, viruses ...).
216

Quantifying diffusion in biofilms : from model hydrogels to living biofilms

Golmohamadi, Mahmood 07 1900 (has links)
Les biofilms sont des communautés de microorganismes incorporés dans une matrice exo-polymérique complexe. Ils sont reconnus pour jouer un rôle important comme barrière de diffusion dans les systèmes environnementaux et la santé humaine, donnant lieu à une résistance accrue aux antibiotiques et aux désinfectants. Comme le transfert de masse dans un biofilm est principalement dû à la diffusion moléculaire, il est primordial de comprendre les principaux paramètres influençant les flux de diffusion. Dans ce travail, nous avons étudié un biofilm de Pseudomonas fluorescens et deux hydrogels modèles (agarose et alginate) pour lesquels l’autodiffusion (mouvement Brownien) et les coefficients de diffusion mutuels ont été quantifiés. La spectroscopie par corrélation de fluorescence a été utilisée pour mesurer les coefficients d'autodiffusion dans une volume confocal de ca. 1 m3 dans les gels ou les biofilms, tandis que les mesures de diffusion mutuelle ont été faites par cellule de diffusion. En outre, la voltamétrie sur microélectrode a été utilisée pour évaluer le potentiel de Donnan des gels afin de déterminer son impact sur la diffusion. Pour l'hydrogel d'agarose, les observations combinées d'une diminution du coefficient d’autodiffusion et de l’augmentation de la diffusion mutuelle pour une force ionique décroissante ont été attribuées au potentiel de Donnan du gel. Des mesures de l'effet Donnan (différence de -30 mV entre des forces ioniques de 10-4 et 10-1 M) et l'accumulation correspondante d’ions dans l'hydrogel (augmentation d’un facteur de 13 par rapport à la solution) ont indiqué que les interactions électrostatiques peuvent fortement influencer le flux de diffusion de cations, même dans un hydrogel faiblement chargé tel que l'agarose. Curieusement, pour un gel plus chargé comme l'alginate de calcium, la variation de la force ionique et du pH n'a donné lieu qu'à de légères variations de la diffusion de sondes chargées dans l'hydrogel. Ces résultats suggèrent qu’en influençant la diffusion du soluté, l'effet direct des cations sur la structure du gel (compression et/ou gonflement induits) était beaucoup plus efficace que l'effet Donnan. De même, pour un biofilm bactérien, les coefficients d'autodiffusion étaient pratiquement constants sur toute une gamme de force ionique (10-4-10-1 M), aussi bien pour des petits solutés chargés négativement ou positivement (le rapport du coefficient d’autodiffusion dans biofilm sur celui dans la solution, Db/Dw ≈ 85 %) que pour des nanoparticules (Db/Dw≈ 50 %), suggérant que l'effet d'obstruction des biofilms l’emporte sur l'effet de charge. Les résultats de cette étude ont montré que parmi les divers facteurs majeurs qui affectent la diffusion dans un biofilm environnemental oligotrophe (exclusion stérique, interactions électrostatiques et hydrophobes), les effets d'obstruction semblent être les plus importants lorsque l'on tente de comprendre la diffusion du soluté. Alors que les effets de charge ne semblaient pas être importants pour l'autodiffusion de substrats chargés dans l'hydrogel d'alginate ou dans le biofilm bactérien, ils ont joué un rôle clé dans la compréhension de la diffusion à travers l’agarose. L’ensemble de ces résultats devraient être très utiles pour l'évaluation de la biodisponibilité des contaminants traces et des nanoparticules dans l'environnement. / Biofilms are primarily communities of microorganisms embedded in a complex exopolymer matrix. They are thought to play an important role as diffusive barriers in environmental systems and human health, resulting in increased resistance to disinfectants and antibiotics. Since mass transport in a biofilm is primarily due to molecular diffusion, it is critical to understand the main parameters influencing diffusive fluxes in a biofilm. In this thesis, a Pseudomonas fluorescens biofilm and two model hydrogels, (agarose and calcium alginate), were investigated. Both self-diffusion (Brownian motion) and mutual diffusion coefficients were quantified. Fluorescence correlation spectroscopy was used to measure the self-diffusion coefficients in a ca. 1 m3 confocal volume in the gels or biofilms, whereas a diffusion cell setup was employed for mutual diffusion measurements. In addition, microelectrode voltammetry was used to evaluate Donnan potential of the gels in order to determine its impact on diffusion. For the agarose hydrogel, the combined observations of a decreasing self-diffusion coefficient coupled with increasing mutual diffusion as a function of a decreasing ionic strength have been attributed to the gel’s Donnan potential. Measurements of the Donnan effect (difference of -30 mV between ionic strengths of 10-4 and 10-1 M) and the corresponding accumulation of ions in the hydrogel (13x enhancement with respect to the bulk solution) indicated that electrostatic interactions can strongly influence the diffusive flux of cations, even in a weakly charged hydrogel, such as agarose. Somewhat surprisingly, for a more highly charged gel such as calcium alginate, varying ionic strength and pH resulted in only small changes to the diffusion of charged probes in the hydrogel. These results suggested that the direct effect of the cations on gel structure (due to an induced swelling or compression) was much more effective than the Donnan effect when influencing solute diffusion. Similarly, for a bacterial biofilm, self-diffusion coefficients were virtually constant across a range of examined ionic strengths (10-4-10-1 M) for both negatively and positively charged small solutes (Db/Dw≈85%) and nanoparticles (Db/Dw≈50%), suggesting that the obstruction effect of the biofilms again overwhelmed the charge effect. The results of this work indicated that among the various major factors affecting diffusion in an oligotrophic environmental biofilm (steric exclusion, hydrophobic and electrostatic interactions), obstruction effects appeared to be the most important when attempting to understand the solute diffusion. While charge effects did not appear to be important to the self-diffusion of charged substrates in the alginate hydrogel or bacterial biofilm, they were key to understanding diffusion through another gel, with numerous biomedical and environmental applications, i.e. agarose. These results should be extremely useful when evaluating the bioavailability of the trace contaminants and nanoparticles in the environment.
217

Influence de l'état protéique sur la dynamique de séparation de phase et de gélification dans un système ternaire aqueux à base de protéines de pois et d'alginate / Influence of protein state on the phase separation and gelation within an aqueous system made of pea proteins and alginate

Mession, Jean-Luc 14 September 2012 (has links)
Deux systèmes aqueux à 20°C constitués de protéines globulaires de pois et d’alginate de sodium ont été considérés au cours de cette étude, dans des conditions de solvant fixées à pH 7,2 et 0,1 M NaCl. Dans un premier temps, le comportement de phase de globulines faiblement dénaturées (i) ou pré-agrégées thermiquement (ii) en mélange avec de l’alginate a été comparé à différentes échelles d’observation, en termes de diagrammes de phase et de microstructure analysée par microscopie confocale. Attribuée à un phénomène général d’incompatibilité thermodynamique, la séparation de phase a été décrite tout particulièrement sous des aspects morphologiques et cinétiques à l’échelle microscopique, selon la composition de départ en biopolymères et le mode de préparation des globulines. Par la suite, une gélification de chacun des deux systèmes a été opérée à froid, par libération de calcium ionique in situ à partir d’un sel de calcium de carbonate peu soluble au-dessus de pH 7, sous l’effet acidifiant d’une hydrolyse lente de la glucono-δ-lactone (GDL). L’intérêt d’un tel procédé reposait sur l’obtention de gels remplis à mixtes lorsque l’alginate seul ou l’alginate et la phase protéique pouvaient gélifier en présence de calcium. Des corrélations entre propriétés rhéologiques mesurées en régime dynamique (modules G’ et G’’) et données de microstructure ont été effectuées, par l’intermédiaire de l’analyse de texture d’image selon la méthode de cooccurrence. Chaque mélange témoignait d’une séparation de phase bloquée cinétiquement par sa gélification. Par rapport aux gels d’alginate seul ou gels remplis où l’alginate seul pouvait gélifier via le calcium, les gels mixtes témoignaient d’un effet de synergie remarquable d’un point de vue élasticité finale des gels. Dans le même temps, les globulines pré-agrégées ne montraient pas d’aptitude à la gélification selon le procédé appliqué ici. En outre, des effets ségrégatifs induisaient un enrichissement des protéines et du polyoside dans deux phases coexistantes, renforçant de ce fait des interactions entre biopolymères du même type. Les gels mixtes les plus élastiques présentaient une structure enchevêtrée avec un réseau protéique prédominant. Les observations en microscopie électronique à transmission effectuées par un marquage différentiel des deux biopolymères suggèreraient qu’il puisse se former localement des interactions attractives inter-biopolymères, probablement via le calcium, à l’interface des deux phases initialement immiscibles. Ce pontage consoliderait globalement la cohésion entre les deux réseaux protéique et polyosidique / Two aqueous systems at 20°C in 0.1 M NaCl and pH 7.2 containing globular pea proteins and sodium alginate were investigated in this study. First, phase behavior of (i) either low-denatured mixed globulins or (ii) their thermally pre-aggregated counterparts - alginate mixtures was compared using a multi-scale approach, by means of phase diagram and microstructure analysis by confocal microscopy. Thermodynamic incompatibility was the main driving force leading to phase separation within the mixtures, which presented according to their initial biopolymer composition both different morphological and time-evolution features of coexisting phases. Thereafter, a cold-set gelation for each system was performed, as the slow hydrolysis of glucono-δ-lactone (GDL) acidified the media and mediated the release in situ of calcium ions from calcium carbonate, practically insoluble at pH higher than 7. Such procedure would allow gelation via calcium of alginate only or both alginate and the protein phase, giving rise to filled and mixed gels, respectively. An attempt to correlate rheological measurements (G’, G’’ dynamic moduli) with microstructural data was carried out according to image texture analysis by the cooccurrence method. Phase separation was kinetically entrapped by gelation. Compared to single-alginate gels or native globulins-alginate filled gels where alginate was the only gelling agent via calcium, mixed gels reflected in fact great synergism effect regarding final gel elasticity. Meanwhile, pre-aggregated pea globulins could not form a gel with the gelation procedure of choice here. Besides, stronger segregative effects were evidenced by increasing initial biopolymer composition thus enhancing self-biopolymer interaction in their respective enriched-coexisting phases. The strongest mixed gels displayed entangled structure. According to a differential labelling of each incompatible biopolymer, observations with transmission electron microscopy suggested inter-biopolymer attractive interaction at the interface of coexisting phases, probably via calcium cations. Salt-bridging would reinforce cohesiveness between both protein and alginate networks
218

Evaluation du potentiel bioprotecteur de bactéries lactiques confinées dans une matrice polymérique / Lactic acid bacteria strains for bioprotection application with cells entrapment in biopolymeric matrices

Léonard, Lucie 14 November 2013 (has links)
Parmi les différentes méthodes de lutte contre les microorganismes pathogènes et/ou altérants en agroalimentaire, l’utilisation de bactéries lactiques (LAB) bioprotectrices s'avère être un outil prometteur pour la préservation des aliments. Ce travail de thèse collaboratif, entre l'équipe PAPC (AgroSup Dijon, Université de Bourgogne) et le laboratoire BioDyMIA (Université Lyon1-Isara Lyon), concerne l'étude de systèmes bioprotecteurs immobilisant des cellules entières de LAB dans une matrice polymérique d'alginate de sodium et de caséinate de sodium pour une activité ciblée contre Listeria spp. Dans un premier temps, la méthodologie mise en œuvre a consisté à sélectionner des souches de LAB bioprotectrices sur la base de leur activité antimicrobienne évaluée par la méthode de diffusion en milieu gélosé contre trois souches de Listeria spp. Quatre souches sur 19 ont ainsi été sélectionnées. Une caractérisation partielle des métabolites antimicrobiens produits par ces 4 souches a ensuite été réalisée en appliquant des traitements thermiques et enzymatiques aux surnageants de culture correspondants pour évaluer si ces traitements altéraient l’activité des métabolites antimicrobiens présents. Une purification et une identification partielle des actifs antimicrobiens de nature peptidique ont été réalisées uniquement pour la souche d'intérêt principale : Lactococcus lactis LAB3. Dans un second temps, une formulation de la matrice polymérique d’immobilisation des LAB sélectionnées a été choisie en réalisant le diagramme de phases du système aqueux alginate de sodium/caséinate de sodium : 1,5 % (m/m) d'alginate de sodium / 4 % (m/m) de caséinate de sodium / 20 % (m/m) bouillon MRS. Cette formulation a permis d'obtenir une matrice composée d’une phase continue riche en alginate et d’une phase dispersée riche en caséinate dans laquelle les cellules de LAB se localisent préférentiellement d’après les observations en microscopie de fluorescence confocale à balayage laser. Suite à l'inclusion des cellules de LAB dans ces matrices liquides et gélifiées d'alginate seul et d'alginate/caséinate, leur cultivabilité et leur activité anti-Listeria ont été suivies à 30°C pendant 12 jours. Ceci a révélé que la cultivabilité et l’activité antimicrobienne des cellules de LAB se maintiennent à des niveaux plus élevés dans les matrices d'alginate/caséinate que dans celles uniquement à base d’alginate. Ces matrices à base d’alginate et de caséinate apparaissent donc comme un système prometteur pour l'immobilisation de LAB bioprotectrices. Leur intérêt pour l’inclusion de LAB a pu être corrélé à leur viabilité et à la structure composite de cette matrice à base de protéines qui favoriserait la production et la libération des métabolites antimicrobiens / Among the various methods to control foodborne pathogenic and/or food spoilage microorganisms in food chain, bioprotective lactic acid bacteria (LAB) appear to be promising tools for food biopreservation. This collaborative study, between PAPC (Agrosup Dijon, University of Burgundy) and BioDyMIA (University Lyon1-Lyon Isara) laboratories, concerned the development of sodium alginate/sodium caseinate polymeric matrices intended to entrap LAB cells selected for their anti-Listeria spp. activity. First, 4 LAB strains from 19 LAB strains were selected for their anti-Listeria spp. activity: this screening was performed by the method of agar diffusion against three Listeria spp strains. Then, antimicrobial metabolites produced by the selected LAB strains were partially characterized by assessing the effect of various thermal and enzymatic treatments on the anti-Listeria spp. activity of their culture supernatants. A partial purification and identification of antimicrobial active peptides produced by the main strain of interest (Lactococcus lactis LAB3) was also performed. A composition of the polymer matrix has been selected by performing the phase diagram of sodium alginate/sodium caseinate system: 1.5% (w/w) sodium alginate / 4% (w/w) of caseinate sodium / 20% (w/w) MRS broth. This formulation provides a rich alginate continuous phase and a rich caseinate dispersed phase in which LAB cells localize according to the study by confocal microscopy. LAB cells were immobilized in liquid and gelled matrices of alginate and alginate/caseinate. Culturability and anti-Listeria activities were measured during a storage at 30°C for 12 days. The alginate/caseinate matrices were more effective in better maintaining LAB cells cultivability and their antimicrobial activity than alginate matrix. This effectiveness seemed correlated with cell viability and the dispersion-like structure of the protein-based system which enhance production and release of antimicrobial metabolites. Thus, this type of polymeric matrix appeared as a promising immobilization system of bioprotective LAB
219

Synthèse d'agents RAFT macromoléculaires hydrophiles à base d'acide (méth)acrylique ou d'alginate pour l'élaboration de nanoparticules par polymérisation en émulsion / Synthesis of poly(meth)acrylic acid and alginate-based hydrophilic macromolecular RAFT agents for the design of nanoparticles by emulsion polymerization

Chaduc, Isabelle 31 October 2013 (has links)
Ces travaux décrivent la synthèse de nanoparticules stabilisées par des polyélectrolytes d’originesynthétique (poly(acide (méth)acrylique)) ou naturelle (alginate) par polymérisation radicalairecontrôlée (PRC) de type RAFT en émulsion. Ce procédé est basé sur l’utilisation d’un polymèrehydrophile obtenu par RAFT (macroRAFT) qui est réactivé dans l’eau pour la polymérisation d’unmonomère hydrophobe. Des copolymères à blocs amphiphiles sont ainsi générés et s’auto-assemblent in situ pour former des nanoparticules. Dans un premier temps, nous avons cherché à conduire l’ensemble du procédé en milieu aqueux. Des études ont ainsi été menées sur la polymérisation RAFTdans l’eau de l’acide acrylique et de l’acide méthacrylique. Des homopolymères bien définis ont été obtenus sur une large gamme de conditions, puis ont été utilisés comme macroRAFTs pour la polymérisation en émulsion de monomères hydrophobes. Des nanoparticules stables constituées de copolymères à blocs amphiphiles bien définis ont été produites. Il a été montré que le contrôle de la polymérisation et la nucléation dépendaient fortement du pH, mais qu’une bonne stabilité colloïdale était néanmoins observée dans tous les cas. Ce procédé "one-pot " a ensuite été extrapolé à la synthèse de particules stabilisées par des copolymères hydrophiles de N-acryloylmorpholine (NAM) et de macromonomères d’alginate. Des nano-objets aux morphologies variées ont été obtenus. Afin de mieux appréhender la formation de ces morphologies, un système modèle employant un copolymère hydrophile de NAM et de macromonomère de polyNAM obtenu par polymérisation RAFT a été étudiépour la polymérisation en émulsion du styrène. / This work describes the synthesis of nanoparticles stabilized by polyelectrolytes from synthetic(poly((meth)acrylic acid)) or natural (alginate) source by controlled free radical polymerization (CRP),namely RAFT, in emulsion. This process is based on the use of a hydrophilic polymer prepared by RAFT (i.e. macroRAFT) which is reactivated in water for the polymerization of a hydrophobic monomer. The formation of amphiphilic block copolymers which self-assemble in situ leads to the formation of nanoparticles. Firstly, we tried to perform the whole process in water. The RAFT polymerization of acrylic acid and methacrylic acid was studied in this context. Well-defined homopolymers were obtained under a large range of conditions, and further used as macroRAFTs in emulsion polymerization of hydrophobic monomers. Stable nanoparticles composed of well-defined amphiphilic block copolymers were produced. It was shown that the control of the polymerization and the nucleation were strongly dependent on the pH. Nevertheless, a good colloidal stability wasobserved in all cases. This “one-pot” process was then extrapolated to the synthesis of particles stabilized by hydrophilic copolymers of N-acryloylmorpholine (NAM) and alginate macromonomer. Nano-objects with various morphologies were obtained. In order to better understand the formation of these morphologies, a model system using a hydrophilic copolymer of NAM and a polyNAM macromonomer obtained by RAFT polymerization was studied in styrene emulsion polymerization.
220

Microparticules polysaccharides aux propriétés antibactériennes dirigées contre S. Aureus / Polysaccharides microparticles with antibacterial properties against S. Aureus

Dammak, Ali 19 July 2017 (has links)
Staphylococcus aureus a été classé parmi les bactéries les plus pathogènes du genre Staphylococcus. Ce pathogène est responsable d'infections localisées (plaies chroniques, infections sur prothèses) voire de septicémies et d’infections nosocomiales. L’objectif principal de ce projet est d’élaborer des vecteurs colloïdaux biocompatibles à base de polysaccharides, chargés en principe actif antibactérien, et ciblant spécifiquement des biofilms de S. aureus. La méthode de complexation polyélectrolytes entre polysaccharides de charge opposée (chitosane/alginate et chitosane/dextrane sulfate) a été sélectionnée pour élaborer des particules de taille micrométrique. Ces microparticules n’étant pas stables, elles ont été stabilisées par réticulation chimique. Un antibiotique à large spectre d’activité de la famille des fluoroquinolones, la ciprofloxacine, a été séquestrée dans les microparticules. Des essais microbiologiques ont été réalisés en planctonique et sur biofilms, sur une souche de S. aureus et une souche de Pseudomonas aeruginosa. La ciprofloxacine encapsulée présente une activité antibactérienne (CMI, CMB et CMEB) plus importante que la ciprofloxacine libre. Par ailleurs, les MPs à base de chitosane/alginate sont plus actives que celles constituées de chitosane/dextrane sulfate. Enfin, un greffage d’un anticorps anti-protéine A a été réalisé sur les microparticules chitosane/alginate chargées en ciprofloxacine. Ces microparticules présentent une activité antibactérienne sur le biofilm de S. aureus légèrement améliorée par rapport aux microparticules dépourvues d’anticorps. / Staphylococcus aureus has been classified as one of the most pathogenic bacteria of the Staphylococcus genus. This bacterium is responsible for localized infections (chronic wounds, infections on artificial joints) or even septicemia and nosocomial infections. The main objective of this project is to develop biocompatible colloidal vectors based on polysaccharides, loaded with antibacterial active compound, and specifically targeting Staphylococcus aureus biofilms. The polyelectrolyte complexation between polysaccharide of opposite charge (chitosan / alginate and chitosan / dextran sulfate) has been selected to produce micrometric particles. By varying the total concentration of polysaccharide and the charge ratio between polyanion and polycation, it is possible to obtain variable sizes. As these microparticles were not stable, they were stabilized by chemical crosslinking. An antibiotic of the fluoroquinolone family, ciprofloxacin, with a large spectrum of activity, was entrapped in the micoparticles. Microbiological tests were carried out in planktonics and biofilms on different strains of Staphylococcus aureus and Pseudomonas aeruginosa. Loaded ciprofloxacin exhibits greater antibacterial activity (MIC, CMB and CMEB). Moreover, the chitosan / alginate-based MPs are more active than those consisting of chitosan / dextran sulfate. Finally, a grafting of an antiprotein A antibody was carried out on chitosan / alginate microparticles loaded with ciprofloxacin. These modified microparticles exhibit a slightly improved antibacterial activity compared to loaded ciprofloxaxin microparticles whitoutantibody.

Page generated in 0.0658 seconds