1 |
Development of a right angle friction stir welding (RAFSW) technique to assemble aluminum productsMomeni, Mahboubeh 02 February 2024 (has links)
Aujourd'hui, le soudage par friction-malaxage (FSW) a attiré beaucoup d'attention dans les secteurs universitaires et industriels. Malgré ses avantages importants par rapport aux techniques de soudage par fusion, il n'est pas largement utilisé dans l'industrie actuelle, principalement en raison des coûts d'équipement élevés et des redevances. Certaines autres raisons sont les forces de processus élevées, le besoin d'un serrage puissant, le manque de directives concernant la fenêtre de travail efficace des paramètres du processus et l'effet du traitement thermique après soudage. En outre, il est nécessaire d'avoir une conception d'outils appropriée pour différentes applications, géométries et configurations de soudage. Pour surmonter ces problèmes, une technique FSW rentable appelée FSW à angle droit(RAFSW) a récemment été introduite par l'équipe PI2/ REGAL de l'Université Laval. Il est essentiel de développer et d'étudier ses différents aspects pour rendre la technique fiable pour une large utilisation industrielle. Dans cette thèse, l'objectif est de fournir aux utilisateurs potentiels des directives et des fenêtres de travail efficaces pour les paramètres du processus de soudage à des vitesses de soudage élevées applicables à différentes configurations et géométries. Une conception d'outils appropriée pour différentes applications est également un autre aspect à explorer. De plus l'effet du traitement thermique après soudage sera étudié. Enfin, la technique sera adaptée pour être mise en œuvre sur des routeurs CNC de grande taille et à faible coût afin d'assembler de grands panneaux en aluminium à de faibles forces de soudage sans avoir besoin d'un serrage solide. / Today, friction stir welding (FSW) has attracted much attention in both academic and industrial sectors. In spite of its prominent advantages over fusion welding techniques, it is not widely used intoday's industry mainly due to high equipment costs and royalties. Some other reasons are high process forces, need for powerful clamping, lack of guidelines regarding efficient working window of process parameters and the effect of post weld heat treatment. Furthermore, it is needed to have aproper tool design for different applications, geometries, and welding configurations. To overcome these issues, a cost-effective FSW technique called FSW at right angle (RAFSW) has been recently introduced by PI2/REGAL team at Laval University. It is essential to develop and study its different aspects to make the technique reliable for widespread industrial use. In this thesis, the aim is to provide potential users with guidelines and efficient working windows for welding process parameters at high welding speeds applicable for different configurations and geometries. Proper tool design for different applications is another aspect to be explored, as well. Moreover, the effect of postweld heat treatment will be studied. Finally, the technique will be adapted to implement on big-size,low-cost CNC routers to assemble large aluminum panels at low welding forces without the need forsturdy clamping.
|
2 |
Fatigue optimization and quality control of friction stir welded joints in aluminum highway bridge decksTrimech, Mahmoud 13 December 2023 (has links)
Titre de l'écran-titre (visionné le 28 novembre 2023) / Les ponts en aluminium modernes sont composés de plusieurs longues extrusions multi-vide soudées. Ces joints soudés sont particulièrement vulnérables à la rupture en fatigue car ils sont susceptibles de se présenter comme des zones d'initiation de fissures en fatigue sous l'effet du chargement cyclique du trafic. La fatigue est un état limite critique dans la conception de nombreux ponts de courte à moyenne portée. Traditionnellement, les techniques de soudage conventionnelles par fusion ont été utilisées pour fabriquer les tabliers de ponts en aluminium. Ces techniques ont été connues par produire certains défauts métallurgiques et une variété de défauts volumiques lorsqu'ils sont utilisés pour des structures en aluminium. Ces défauts ont un effet significatif sur la résistance en fatigue des joints soudés. Cependant, une technologie de soudage « relativement » nouvelle connue comme soudage par friction-malaxage (FSW) a émergé et a été suggérée pour être utilisée dans des projets d'infrastructure impliquant de l'aluminium. Cette approche innovante de soudage a montré qu'elle produisait une qualité de soudure améliorée et offrait un meilleur contrôle des défauts de soudure par rapport aux méthodes de soudage traditionnelles. Pourtant, son utilisation est encore limitée en raison de l'insuffisance de directives dans les codes et normes actuels. Des facteurs clés tels que la résistance en fatigue des joints FSW et les critères complets de contrôle de la qualité, y compris les niveaux de tolérance pour les défauts couramment rencontrés, restent non standardisés. De plus, les modèles numériques utilisés pour la conception en fatigue des ponts en aluminium sont rares. Comme les alliages d'aluminium extrudés sont de plus en plus utilisés pour la construction de ponts, il existe un besoin croissant de modèles numériques robustes capables de prédire avec précision le comportement en fatigue des tabliers de pont en aluminium extrudé soudés sous diverses conditions de chargement. Cette thèse doctorale vise à caractériser le comportement en fatigue des configurations FSW les plus récentes dans l'industrie des tabliers de pont, en particulier les joints FSW en bout à bout à recouvrement. Le projet cherche également à établir des niveaux de tolérance pour les défauts d'ajustement associés aux tabliers de ponts et à étudier leurs effets sur les performances métallurgiques et en fatigue des joints FSW en bout à bout à recouvrement. Enfin, la thèse vise à développer des modèles numériques capables de prédire la durée de vie à en fatigue d'échantillons FSW en bout à bout à recouvrement à grande échelle extraits de vrais tabliers de ponts en aluminium sous diverses configurations de chargement. Des essais expérimentaux et une analyse numérique ont été menés pour étudier le comportement en fatigue des joints FSW en bout à bout à recouvrement utilisés dans les tabliers de ponts en aluminium. Des essais de fatigue à grande échelle ont été conçues pour provoquer la rupture en fatigue dans le joint FSW des échantilons constitués d'une paire d'extrusions utilisées dans les tabliers de ponts. Les résultats expérimentaux ont indiqué que la rupture s'est initiée à partir du défaut de la remontée de surface à la pointe de l'interface dans la racine de la soudure et s'est propagée jusqu'au point d'application de la charge. Les simulations numériques ont évalué les données expérimentales de fatigue avec l'approche de la contrainte effective de concentration (ENS) recommandée par l'Institut International International de Soudage (IIW). Les résultats ont montré que la courbe de conception en fatigue IIW FAT-71 a évalué de manière conservatrice les données de fatigue. Les défauts d'ajustement, y compris les écarts et les décalages d'outil, ont été simulés et fabriqués expérimentalement, et leurs niveaux de tolérance ont été déterminés en fonction d'un processus de préqualification par étapes en utilisant les critères d'acceptation du code de contrôle de la qualité du FSW. De plus, une condition de soudage où la direction de rotation de l'outil FSW a été inversée, a été simulée expérimentalement pour déterminer quelle direction de rotation fournit une meilleure résistance en fatigue pour les joints FSW en bout à bout à recouvrement. Des échantillons de fatigue FSW en bout à bout à recouvrement à grande échelle présentant ces conditions de soudage ont été fabriqués et testés en fatigue. Les données de fatigue de ces essais ont été analysées statistiquement et comparées, ainsi qu'une analyse numérique pour enquêter sur les différences de résistance en fatigue entre les conditions de soudage. Les résultats ont révélé que le défaut de la remontée de surface a joué un rôle critique dans les mécanismes de rupture en fatigue et la résistance en fatigue des joints FSW en bout à bout à recouvrement, l'absence de défaut de remontée de surface conduisant à des améliorations significatives de la résistance en fatigue. Un cadre numérique pour prédire la durée de vie en fatigue des échantillons FSW en bout à bout à recouvrement a été développé, basé sur un modèle d'éléments finis. Ce cadre a d'abord prédit avec précision la localisation et la direction de l'initiation de l'amorçage de fatigue en utilisant la théorie des distances critiques (TCD) avec à la fois la méthode de point (PM) et la méthode de ligne (LM). Ensuite, en fonction de la localisation estimée de l'initiation de l'amorçage de fatigue, la durée de vie en fatigue est prédite en utilisant la TCD et les modèles simplistes de mécanique de la rupture élastique linéaire (LEFM). L'efficacité du cadre numérique a été vérifiée en comparant ses prédictions avec des données expérimentales de fatigue provenant de essais de fatigue réalisés sur des échantillons sous différentes configurations de chargement, démontrant un accord raisonnable entre les prédictions et les résultats expérimentaux. / Modern aluminium bridge decks are made from welding several long multi-void extrusions. These welded joints are particularly vulnerable to fatigue failure as they are likely to serve as fatigue crack initiation zones under the effect of cyclic traffic loading. Fatigue is a critical limit state in the design of many short to medium bridges. Traditionally, conventional fusion welding techniques have been used to fabricate aluminium bridge decks. These techniques have been known to produce metallurgical defects and a variety of volumetric defects when used for aluminium structures. These defects have significant effect on the fatigue resistance of welded joints. However, a relatively new welding technology known as friction stir welding (FSW) has emerged and has been suggested for use in infrastructure projects involving aluminium. This innovative welding approach was shown to produce an enhanced weld quality and provide superior control over weld defects to the traditional welding methods. Yet, its use is still limited due to insufficient guidelines in current codes and standards. Key factors such as the fatigue strength of FSW joints and comprehensive quality control criteria, including tolerance levels for commonly occurring defects, remain unstandardized. Furthermore, the numerical models used for fatigue design in aluminium bridges are scarce. As extruded aluminium alloys are increasingly used for bridge construction, there is a growing need for robust numerical models capable of accurately predicting the fatigue behaviour of welded extruded aluminium bridge decks under various load conditions. This doctoral thesis aims to characterize the fatigue behaviour of the most recent FSW configurations in the bridge deck industry, specifically butt-lap FSW joints. The project also seeks to establish tolerance levels for fit-up defects associated with bridge decks and investigate their effects on the metallurgical and fatigue performance of butt-lap FSW joints. Lastly, the thesis aims to develop numerical models capable of predicting the fatigue life of FSW aluminium bridge decks under various loading configurations. Experimental tests and numerical analysis were conducted to study the fatigue behaviour of butt-lap FSW joints used in aluminium bridge decks. Large-scale fatigue experiments were designed to provoke fatigue failure in the FSW joint of specimens consisting of a pair of extrusions used in bridge decks. Experimental results indicated that failure initiated from the hooking defect at the tip of the interface in the weld root and propagated to the load application point. Numerical simulations assessed the experimental fatigue data with the effective notch stress (ENS) approach as recommended by the International Institute of Welding (IIW). The results showed that the IIW FAT-71 fatigue design curve conservatively assessed the fatigue data. Fit-up defects, including gaps and tool offsets, were simulated and fabricated experimentally, and their tolerance levels were determined based on a stage prequalification process using FSW quality control code acceptance criteria. Additionally, a welding condition where the FSW tool rotational direction was reversed, was experimentally simulated to investigate which rotational direction provides better fatigue strength for butt-lap FSW joints. Large-scale butt-lap FSW fatigue specimens featuring these welding conditions were fabricated and fatigue-tested. The fatigue data from these tests were statistically analyzed and compared, along with numerical analysis to investigate differences in fatigue strength between welding conditions. Results revealed that the hooking defect played a critical role in fatigue failure mechanisms and fatigue strength of butt-lap FSW joints, with the absence of the hooking defect leading to significant improvements in fatigue strength. A numerical framework for predicting the fatigue life of butt-lap FSW specimens was developed, based on finite element analysis. This framework first accurately predicted the fatigue initiation location and direction using the theory of critical distances (TCD) with both the point method (PM) and line method (LM). Depending on the estimated fatigue initiation location, the fatigue life is then predicted using TCD and linear elastic fracture mechanics (LEFM) models. The numerical framework's efficiency was verified by comparing its predictions with experimental fatigue data from fatigue tests conducted on specimens under different loading configurations, demonstrating reasonable agreement between the predictions and experimental results.
|
3 |
Development of techniques for deep welding of aluminum structural assembliesBahrami, Milad 06 March 2024 (has links)
Thèse ou mémoire avec insertion d'articles / L'un des principaux procédés de soudage de l'aluminum est le soudage à l'arc sous gaz et métal (GMAW). Le soudage MIG (Metal Inert Gas) est un procédé de soudage à l'arc sous gaz et métal (GMAW) qui utilise une électrode à fil solide continu. Ce procédé est une technique polyvalente adaptée aux composants en tôle mince et à section épaisse. Le soudage MIG est un processus qui joint les métaux en chauffant les métaux de base et d'électrode à leurs points de fusion avec un arc électrique. L'arc se situe entre un fil d'électrode consommable continu et le métal à souder. La présente thèse est une tentative pour faciliter la mise en œuvre de GMAW sur des matériaux de forte épaisseur. GMAW implique de nombreux paramètres de processus, tels que le courant d'arc, l'épaisseur de la pièce et la géométrie de soudage, le fil-électrode, le diameter de l'électrode de l'électrode, la vitesse d'alimentation, le type de gaz de protection, la vitesse de déplacement, l'angle du pistolet, la distance entre la soudure et la buse, ainsi que les alliages sélectionnés pour le fil-électrode. Les principaux résultats sont une pénétration complète (pénétration à la racine la racine et sur les côtés), respectant la résistance à la traction ultime (UTS) et ayant une distorsion minimale. L'équipement qui a été proposé pour le soudage MIG est la soudeuse Miller Auto-axcess 450 implantée sur un robot Fanuc R-2000iA. La méthode de Taguchi a été utilisée pour la conception d'expériences et des modèles de réseaux de neurones artificiels ont été entraînés pour l'analyse des résultats d'expériences et l'optimisation. Les logiciels NX Nastran et Simufact sont des solveurs par éléments finis (FE) qui ont été utilisés. Dans cette recherche, les paramètres de soudage ont été optimisés pour une pénétration complète, une résistance maximale à la limite ultime (UTS) respectant les normes et une distorsion minimale pour différentes épaisseurs de matériaux (6,35 mm, 9,525 mm, 12,7 mm, 19,05 mm et 25,4 mm). Les échantillons soudés étaient faits AA6061- T6 préparés avec gorge en V de 60 degrés pour un assemblage abouté. Les paramètres ont aussi été trouvés pour les soudures allant jusqu'à 25.4 mm de profondeur et utilisant les modes multi-passes. En conséquence, une optimisation des paramètres basée sur des échantillons expérimentaux et des modèles ANN a été trouvée pour le soudage à l'arc sous gaz avec le mode Accu-Pulse de AA6061-T6 pour quatre épaisseurs de soudage différentes, telles que 6.35, 12,7, 19,05 et 25,4 mm d'angle de biseau avec 60 degrés et différents écarts à la racine et le nombre de passes à la racine. Pour que le matériau le plus épais, 25,4 mm, ait moins de distorsion (25,4 mm d'épaisseur), la séquence de la soudure a été définie et une bonne pénétration a été obtenue. / One of the main processes for welding aluminum is gas metal arc welding (GMAW). Metal Inert Gas (MIG) welding is a gas metal arc welding (GMAW) process that uses a continuous solid wire electrode, and this process is a versatile technique suitable for both thin sheet and thick section components. MIG welding is a process that joins metals by heating the base and electrode metals to their melting points with an electric arc. The arc is formed between a continuous, consumable electrode wire and the metal being welded. The current thesis is an attempt to make GMAW implementation on thick material easier. GMAW involves many process parameters, such as arc current, work piece thickness and welding geometry, wire electrode, electrode thickness, feed rate, type of shielding gas, travel speed, gun angle, distance between the weld and nozzle. The main requirements of the joint are full penetration (root and side penetration), respecting Ultimate Tensile Strength (UTS), and having minimum distortion. The equipment that has been proposed for MIG welding is Miller AutoAxcess450 welding machine implemented on a Fanuc R-2000A robot. The Taguchi method was utilized to design the trials, and artificial neural network models were trained for the analysis and optimization of the outcomes. NX Nastran and Simufact software are finite element (FE) solvers that have been used to do simulation and compare the results with experiments. In this research, it has been shown that the optimized welding parameters have full penetration, maximum UTS, and minimum distortion for different thickness materials (6.35 mm, 9.525 mm, 12.7 mm, 19.05 mm, and 25.4 mm) of aluminum 6061 samples in V-groove butt joint configuration, with 60 degree for the first pass. The welding parameters for multi-passes of thick material up to 25.4 mm have also been found. Gas Metal Arc Welding with the Accu-Pulse mode has been found to be best for welding aluminum 6061 with bevel angles of 6.35, 12.7, 19.05, and 25.4 mm, as well as root gaps and root passes of different lengths and widths. For the thickest material, 25.4 mm, to have less distortion the sequence of the weld has been defined and well-penetrated has been achieved.
|
4 |
Développement d'un système de contrôle pour la robotisation du soudage par friction malaxageMarcotte, Olivier 17 April 2018 (has links)
Ce mémoire traite du développement d'une cellule robotisée de soudage par friction malaxage de l'aluminium pour le Centre de recherche industrielle du Québec. La technologie du soudage par friction malaxage comporte plusieurs avantages par rapport au soudage traditionnel de l'aluminium à l'arc électrique. C'est un procédé qui consomme peu d'énergie, qui ne dégage aucune fumée ou gaz toxique et qui ne nécessite aucun métal d'apport. De plus, les soudures réalisées ont de meilleures propriétés mécaniques car le matériau n'atteint pas le point de fusion. Ce procédé permet par surcroît de souder des séries d'aluminium réputées comme difficilement soudables par d'autres techniques. À ce jour, on utilise principalement des machines dédiées de type portique pour effectuer ce genre de soudure. Cela a l'avantage d'une grande rigidité (requise pour ce procédé) mais d'un autre côté, il est souvent impossible de réaliser des soudures de trajectoires complexes avec ce type d'équipement. Pour cette raison, la robotisation du procédé ouvrirait la porte à de multiples applications nouvelles pour cette technologie. Bien que certains groupes se soient déjà penchés sur la question, les solutions robotisées commercialement disponibles sont très rares à ce jour et en sont à leurs premiers pas. Pour arriver à robotiser le procédé, il a d'abord fallu concevoir une tête de soudage adaptable au robot. On a également dû compenser le manque de rigidité de ce dernier. Pour ce faire, une méthode de contrôle en force a été développée. En bout de ligne, on a pu effectuer des soudures par friction malaxage robotisé sur des trajectoires linéaires, rectangulaires et tridimensionnelles. La qualité des soudures a été comparée à d'autres effectuées sur une fraiseuse, un équipement beaucoup plus rigide.
|
5 |
Développement d'une technique de liaison saphir/saphir pour un capteur de pression à fibre optiqueBégin, Michael 18 April 2018 (has links)
Cette maîtrise a été financée à l'aide une bourse en milieu pratique «BMP innovation» dans le cadre d'un partenariat entreprise-université. La société Opsens a développé un capteur de pression de type interférométrique à fibre optique pour le monitorage de la pression dans le fond de puits de pétrole. Ce capteur (OPP-W GEN I) a déjà fait ses preuves dans des environnements corrosifs à des températures et pressions allant jusqu'à 300°C et 5000kPa. La société désire produire une nouvelle version du produit (OPP-W GEN II) avec une plage d'utilisation plus grande (300°C, 35000kPa). Toutefois, la technique de liaison (soudure) actuelle entre la membrane et la base du capteur ne permet pas une plage de pression aussi grande. Le but du projet de maîtrise est de développer une nouvelle soudure répondant aux exigences de la deuxième version du produit. La recherche se divise en trois différentes méthodes. Le brasage dur avec aluminium a d'abord été expérimenté. Il s'agit de chauffer sous vide un métal entre deux surfaces jusqu'à liquéfaction et de refroidir doucement par la suite. L'oxydation de l'aluminium a ensuite été testée par différentes façons. L'objectif était de produire une stoechiométrie semblable à celle du saphir (AI₂O₃). La deuxième méthode utilise un laser continu Nd-YAG au lieu du four pour chauffer le métal. L'énergie du faisceau focalisé permet de liquéfier très localement le milieu absorbant. En opérant ainsi, on espérait créer des zones de stress et une structure de l'aluminium plus encline à la diffusion de l'oxygène. Toutefois, les résultats montrent que cette technique ne facilite aucunement l'oxydation. La dernière méthode expérimentée utilise un laser femtoseconde. La microsoudure par ce type de laser se démarque des autres techniques de soudure sur plusieurs points. D'abord, elle ne nécessite aucun matériau d'apport. Les effets non linéaires des impulsions ultra-brèves créent la chaleur nécessaire à la soudure. De plus, la zone thermiquement affectée est très réduite (de l'ordre du micromètre).
|
Page generated in 0.0655 seconds