• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 502
  • 68
  • 68
  • 41
  • 31
  • 20
  • 16
  • 11
  • 10
  • 7
  • 5
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 923
  • 446
  • 391
  • 302
  • 265
  • 161
  • 114
  • 86
  • 78
  • 73
  • 72
  • 68
  • 66
  • 64
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

NMR ANALYSIS OF INTRACELLULAR AMYLOID-BETA PEPTIDE

Agatisa-Boyle, Colin Gerard 29 August 2017 (has links)
No description available.
342

I. PHOTOAFFINITY CROSSLINKING OF ALZHEIMER'S DISEASE β-AMYLOID FIBRILS II. PROTEOMIC ANALYSIS OF ENDOTHELIN-1 STIMULATED ASTROCYTES

EGNACZYK, GREGORY FRANCIS 08 November 2001 (has links)
No description available.
343

Mechanistic insights for protein-dependent biofilm formation in Staphylococcus epidermidis and beyond

Johns, Stefanie L. 19 April 2012 (has links)
No description available.
344

NUCLEAR RECEPTORS AS THERAPEUTIC TARGETS FOR ALZHEIMER’S DISEASE

Courtney, Rebecca 08 February 2017 (has links)
No description available.
345

Understanding Amyloid Inhibition: Toward a Residue-Resolution Map of the Interactions between the Alzheimer's Aβ-Peptide and Human Serum Albumin

Algamal, Moustafa 11 1900 (has links)
Amyloidogenesis refers to a process of protein misfolding and aggregation that leads to the formation of highly stable amyloid fibers. Amyloidogenesis may lead to loss of physiological protein function and/or formation of toxic intermediates, which are linked to mutliple human diseases. Amyloidogenesis is inhibited by plasma proteins, which function as extracellular chaperones by binding to stressed and misfolded proteins, including amyloidogenic peptides, and preventing their aggregation. This thesis focuses on the ability of human serum albumin (HSA), the main protein in human plasma, to inhibit amyloidogenesis, with emphasis on the molecular nature of the interactions between HSA and the amyloid β peptide (Aβ) associated with Alzhemier’s disease. HSA is as a key amyloidogenic regulator, a novel function for this protein that goes beyond the traditional HSA roles as plasma osmotic pressure regulator and as binder and carrier of endogenous and exogenous low molecular weight ligands. As a first step towards understanding the detailed molecular nature of these interactions, this thesis will focus on defining the key binding determinants in the interaction between HSA and Aβ peptides. Primarily, we will try to answer two main questions. First, which HSA residues are critical for the recognition of Aβ peptides and the prevention of Aβ aggregation? Second, which Aβ residues are mostly affected by HSA binding? Starting form our knowledge about the stoichiometry and affinity of the Aβ interactions at the level of HSA domains, Chapter 2 addresses the first question through successful applications of a reductionist approach, based on a combination of mutational comparative analyses and fatty acid (FA) competition. This strategy allowed us to identify a short HSA derived peptide that specifically recognizes Aβ and prevents its aggregation. In Chapter 3, we examine the effect of HSA on the pseudo-equilibrium state between Aβ monomers and protofibrils. Using Dark state Exchange Saturation Transfer (DEST), Saturation Transfer Difference (STD) and 15N T2 relaxation experiments, we show that Aβ peptides interact with HSA via a dual mechanism. First, selected residues in Aβ (1-40) monomers bind specifically but weakly to HSA (Kd = 0.1 - 1 mM). Second, HSA competes with Aβ monomers for the binding to the protofibrils, as indicated by an HSA-dependent decrease in the direct vs. tethered probabilities for contacts between Aβ monomer residues and the protofibril surface. The effect of HSA mimics that of dilution for the majority of the Aβ (1-40) residues involved in the cross-beta strands of amyloid fibrils. Finally, Chapter 4 will outline future investigations to address currently open questions about HSA dynamics, HSA-Aβ and HSA-FA interactions, for which we acquired preliminary data. / Thesis / Master of Science (MSc)
346

The Role of 5-Lipoxygenase in the Stress-Mediated Exacerbation of the Alzheimer's Disease Phenotype

Joshi, Yash January 2015 (has links)
BACKGROUND: Alzheimer's disease (AD) is the most common aging-associated neurodegenerative dementia. Current epidemiological trends indicate that a rapidly aging population, in conjunction with the economic impact of AD and lack of disease-modifying agents for AD, make AD an enormous public health challenge. AD pathology has been well characterized: it consists of extracellular plaques composed of Aß protein and intraneuronal tangles of hyperphosphorylated tau protein. Genetic analyses of AD cases have identified causative mutations in the pathways of Aß protein production but these mutations are rare. Therefore environmental factors that modify AD risk are of increasing importance. One such environmental factor that has received attention recently is stress. Biomarkers of stress (i.e., plasma and urinary cortisol) are associated with increased AD risk and more precipitous AD decline. Animal models have also largely recapitulated these results: stress exacerbates the AD phenotype in several studies. One of the actions of stress hormones such as glucocorticoids, is to upregulate the activity of the 5-lipoxygenase protein (5LO). 5LO is widely expressed in the central nervous system and is responsible for producing leukotrienes from arachidonic acid. 5LO has been previously shown to positively modulate Aß production as well the phosphorylation of tau protein. Therefore, while stress is associated with increased AD vulnerability, stress hormones modulate the 5LO protein, and the 5LO protein has been shown to modulate AD pathology, but the importance of 5LO in the stress-mediated exacerbation of the AD phenotype has not yet been explored. HYPOTHESIS: The central hypothesis of this thesis is that 5LO plays a central role in the stress-mediated exacerbation of the AD phenotype. METHODS: We used the 3xTg animal system, an AD transgenic mouse model which expresses both plaques and tangles and crossed 3xTg animals with 5LO knockout mice to create 3xTg animals without 5LO (3xTg/5LO-/-). We challenged both 3xTg and 3xTg/5LO-/- animals with dexamethasone (7 d, 5mg/kg i.p.) and restraint/isolation stress (28 d, 60 min/d) in separate studies to interrogate how the stress-response to Aß, tau and fear-conditioned memory were altered by lack of 5LO in the AD context. RESULTS: In our study with dexamethasone, we found that no memory insults occurred in either 3xTg or 3xTg/5LO-/- animals as a result of a 7 d 5mg/kg dexamethasone i.p. injection challenge. We also found no elevation in brain levels of Aß after dexamethasone exposure, although 3xTg/5LO-/- animals had less Aß than 3xTg animals, a finding our group has previously published. However we found that 3xTg animals had greater phosphorylation of tau and generation of insoluble tau following dexamethasone treatment. This tau pathology was associated with elevation in GSK3ß activity. 3xTg/5LO-/- animals lacked any dexamethasone-associated advancement of tau pathology or elevation in GSK3ß activity. In our study with restraint/isolation stress, we found that 3xTg/5LO-/- animals were protected against fear-conditioned contextual and cued insult recall caused by stress found in 3xTg animals. No change in Aß was found as a function of either genotype or stress condition. As with our study with dexamethasone, we found that 3xTg animals had greater phosphorylation of tau and generation of insoluble tau following restraint/isolation stress. This tau pathology was associated with elevation in GSK3ß activity. 3xTg/5LO-/- animals lacked any restraint/isolation-associated tau pathology or GSK3ß activity. We additionally found that knockout of 5LO exerted a protective effect against restraint/isolation-mediated impairment in long-term potentiation. CONCLUSION: Our work reveals, for the first time, the importance of the 5LO protein in stress-mediated exacerbation of the AD phenotype. These data indicate that 5LO-targeted interventions could be of use in individuals vulnerable to this environmental risk factor, and more broadly, in a preventative strategy against AD. / Pharmacology
347

Immune Recognition of S. Typhimurium Biofilms via Amyloids and Extracellular DNA

Rapsinski, Glenn James January 2016 (has links)
Salmonella enterica serovar Typhimurium is an important cause of gastroenteritis in the United States and the developing world. Biofilm growth is an significant mechanism, which S. Typhimurium utilizes to contaminate food products and survive in the environment. Biofilms are also an important part of the infectious process for many pathogenic bacteria. As part of the biofilm, S. Typhimurium produces an extracellular matrix consisting of cellulose, extracellular DNA, and most importantly, the amyloid protein curli. Similar to amyloids associated with human diseases, curli is recognized by the innate immune system through Toll-Like Receptors (TLRs). Here, we studied the immune receptors recognizing curli as well as interactions between eDNA and curli during biofilm development in order to glean a better understanding of these complex bacterial communities and the immune response to them. Recently, our lab demonstrated that curli fibers are recognized by the TLR2/TLR1 complex. CD14 has been shown to be a common adaptor protein for TLR2/TLR1 complex in response to one of its ligands, tri-acylated lipopeptide, Pam3CSK4. In order to study the role of CD14 in the immune receptor complex recognizing curli, we utilized HeLa 57A cells, a human cervical cancer cell line that has a stably transfected luciferase reporter for Nf-κB activation. When these cells were transiently transfected with TLR2 and TLR1 together or with the addition of membrane-bound CD14, NfκB activation was enhanced by the presence of CD14 in response to purified curli, GST-tagged curli subunit (GST-CsgA), and the control lipopeptide Pam3CSK4. Soluble CD14 also increased NfκB activation in response to purified curli. Bone marrow derived macrophages (BMDM) from wild type (C57BL/6) mice produced more IL-6 and nitric oxide in response to stimulation with purified curli, GST-CsgA, and Pam3CSK4, than BMDMs deficient in CD14. Binding assays demonstrated direct binding of curli to all members of this hypothesized trimolecular complex, TLR2, TLR1, and CD14. Utilizing synthetic peptides corresponding to the fourth and fifth repeat of the CsgA monomer, CsgA R4-5, and its modified version, CsgA R4-5N122A deficient in forming amyloid fibers, we also showed that binding to CD14, and CD14 enhancement of IL-6 production required the fibrillar amyloid structure of curli. To study interactions between curli and eDNA in biofilms and the resulting immune response generated to composites formed by these ECM components, we analyzed biofilms of GFP expressing S. Typhimurium using confocal laser scanning microscopy (CLSM). Staining for amyloids with Congo Red revealed the presence of curli in the biofilms and staining with propidium iodide demonstrated the presence of extracellular DNA in the biofilms. Co-staining with TOTO-1, a nucleic acid stain, and Congo Red showed co-localization of the fluorescent signal for these molecules within the biofilms. DNase I treatment of the biofilms produced no significant change in biofilm thickness by confocal microscopy signifying that the biofilm, possibly eDNA, was resistant to DNase treatment. This was further confirmed by the presence of DNA in purified curli fibers, which were treated twice with DNase and RNase. Polymerization assays showed acceleration of amyloid polymerization in the presence of DNA from both bacteria and salmon sperm. CLSM of bone marrow derived dendritic cells demonstrated that DCs are able to sample antigens from biofilms. BMDCs also produced robust quantities of proinflammatory cytokines in response to wild type, msbB, and ΔfliCfljB S. Typhimurium biofilms and purified amyloid/DNA composites as measured by ELISA. Using BMDCs deficient in TLR2 and TLR9, we found that this cytokine production was partially dependent on TLR2, but did not require TLR9. Together, these findings significantly broaden our understanding of S. Typhimurium biofilms and the immune response to ECM components present in its biofilms. We now understand that a trimolecular complex of TLR2/TLR1/CD14 is required for full response to curli by innate immune cells. We also discerned that interactions between biofilm components aid biofilm development and create composites that are highly immunogenic. This new information enhances the need to explore the interaction between composite ligands and the immune system rather than only studying ligands individually. / Microbiology and Immunology
348

Self-Assembly of Large Amyloid Fibers

Ridgley, Devin Michael 29 May 2014 (has links)
Functional amyloids found throughout nature have demonstrated that amyloid fibers are potential industrial biomaterials. This work introduces a new 'template plus adder' cooperative mechanism for the spontaneous self-assembly of micrometer sized amyloid fibers. A short hydrophobic template peptide induces a conformation change within a highly α-helical adder protein to form β-sheets that continue to assemble into micrometer sized amyloid fibers. This study utilizes a variety of proteins that have template or adder characteristics which suggests that this mechanism may be employed throughout nature. Depending on the amino acid composition of the proteins used the mixtures form amyloid fibers of a cylindrical (~10 μm diameter, ~2 GPa Young's modulus) or tape (5-10 μm height, 10-20 μm width and 100-200 MPa Young's modulus) morphology. Processing conditions are altered to manipulate the morphology and structural characteristics of the fibers. Spectroscopy is utilized to identify certain amino acid groups that contribute to the self-assembly process. Aliphatic amino acids (A, I, V and L) are responsible for initiating conformation change of the adder proteins to assemble into amyloid tapes. Additional polyglutamine segments (Q-blocks) within the protein mixtures will form Q hydrogen bonds to reinforce the amyloid structure and form a cylindrical fiber of higher modulus. Atomic force microscopy is utilized to delineate the self-assembly of amyloid tapes and cylindrical fibers from protofibrils (15-30 nm width) to fibers (10-20 μm width) spanning three orders of magnitude. The aliphatic amino acid content of the adder proteins' α-helices is a good predictor of high density β-sheet formation within the protein mixture. Thus, it is possible to predict the propensity of a protein to undergo conformation change into amyloid structures. Finally, Escherichia coli is genetically engineered to express a template protein which self-assembles into large amyloid fibers when combined with extracellular myoglobin, an adder protein. The goal of this thesis is to produce, manipulate and characterize the self-assembly of large amyloid fibers for their potential industrial biomaterial applications. The techniques used throughout this study outline various methods to design and engineer amyloid fibers of a tailored modulus and morphology. Furthermore, the mechanisms described here may offer some insight into naturally occurring amyloid forming systems. / Ph. D.
349

Equine Septic Arthritis and Serum Amyloid A

Ludwig, Elsa Karen 07 July 2016 (has links)
Bacterial infection within a joint, septic arthritis, is a serious condition in horses that can lead to long-term joint disease if the infection is not resolved quickly. Equine septic arthritis is diagnosed primarily based on clinical signs and synovial fluid cytology. Septic synovial fluid is characterized by significant elevations in total protein (TP) and total nucleated cell count (TNCC). However, in some cases it can be difficult to distinguish between septic arthritis and non-septic joint inflammation (synovitis) based on clinical signs and synovial fluid cytology alone. A rapid assay to help confirm septic arthritis would be advantageous. A new assay to quantify the major equine acute phase protein, serum amyloid A (SAA) may fulfill this need. Serum amyloid A increases in the body in response to injury, infection, and inflammation and shows promise as a useful tool in confirming a diagnosis of sepsis, as inflammation causes mild increases in SAA and infection causes marked elevations. In our study, serial serum and synovial fluid samples were collected from horses with experimental models of synovitis and septic arthritis, synovial fluid cytology was performed, and serum and synovial fluid SAA were quantified. Synovial fluid TNCC and TP concentrations increased significantly following induction of both models. Serum and synovial fluid SAA concentrations remained normal in synovitis horses and increased significantly in septic arthritis horses. Any elevation in serum or synovial fluid SAA above normal values may be supportive of synovial sepsis since synovial inflammation alone did not result in SAA elevations in our model. / Master of Science
350

Small Molecules as Amyloid Inhibitors: Molecular Dynamic Simulations with Human Islet Amyloid Polypeptide (IAPP)

King, Kelsie Marie 09 June 2021 (has links)
Islet amyloid polypeptide (IAPP) is a 37-residue amyloidogenic hormone implicated in the progression of Type II Diabetes (T2D). T2D affects an estimated 422 million people yearly and is a co-morbidity with numerous diseases. IAPP forms toxic oligomers and amyloid fibrils that reduce pancreatic β-cell mass and exacerbate the T2D disease state. Toxic oligomer formation is attributed, in part, to the formation of inter-peptide β-strands comprised of residues 23-27 (FGAIL). Flavonoids, a class of polyphenolic natural products, have been found experimentally to inhibit IAPP aggregate formation. Many of these known IAPP aggregation attenuating small flavonoids differ structurally only slightly; the influence of functional group placement on inhibiting the aggregation of the IAPP(20-29) has yet to be explored. To probe the role of small-molecule structural features that impede IAPP aggregation, molecular dynamics (MD) simulations were performed on a model fragment of IAPP(20-29) in the presence of morin, quercetin, dihydroquercetin, epicatechin, and myricetin. Contacts between Phe23 residues are critical to oligomer formation, and small-molecule contacts with Phe23 are a key predictor of β-strand reduction. Structural properties influencing the ability of compounds to disrupt Phe23-Phe23 contacts include carbonyl and hydroxyl group placement. These structural features influence aromaticity and hydrophobicity, principally affecting ability to disrupt IAPP(20-29) oligomer formation. This work provides key information on design considerations for T2D therapeutics. / Master of Science in Life Sciences / Type II Diabetes (T2D) affects an estimated 422 million people worldwide, with the World Health Organization (WHO) reporting that approximately 1.5 million deaths were directly caused by T2D in 2019. The progression of T2D has been attributed to a protein, called islet amyloid polypeptide (IAPP, or amylin) that is co-secreted with insulin after individuals eat or consumes calories. IAPP has been discovered to form toxic aggregates or clumps of protein material that worsen the disease state and cause a loss of mass of pancreatic cells. There is a large market for therapeutics of T2D and more small molecule drugs are needed to slow progression and severity of T2D. Flavonoids, a class of natural molecules, have been found to inhibit the processes by which IAPP promotes T2D disease progression by stopping the aggregation of IAPP. The structures of these flavonoid compounds differ slightly but show difference in ability to slow IAPP aggregation. By understanding how those differences confer more or less protection against T2D and inhibit IAPP aggregation, we can design more potent and specific drugs to target IAPP. To probe the role of molecular structure in preventing IAPP aggregation, molecular dynamics (MD) simulations — a powerful computational technique — were performed on a model fragment of IAPP in the presence of molecules morin, quercetin, dihydroquercetin, epicatechin, and myricetin. MD simulations provide extremely detailed information about potential drug interactions with a given target, serving as an important tool in the development of new drugs. This work has identified key features and predictors of effective IAPP drugs, providing a framework for the further development of therapeutics against T2D and similar diseases.

Page generated in 0.0439 seconds