Spelling suggestions: "subject:"fjärranalysteknik"" "subject:"analyste""
1 |
Solution-based and flame spray pyrolysis synthesis of cupric oxide nanostructures and their potential application in dye-sensitized solar cellsYousef, Narin January 2015 (has links)
The dye sensitized solar cell (DSSC) is a promising low-cost technology alternative to conventional solar cell in certain applications. A DSSC is a photo-electrochemical photovoltaic device, mainly composed of a working electrode, a dye sensitized semiconductor layer, an electrolyte and a counter electrode. Sunlight excites the dye, producing electrons and holes that can be transported by the semiconductor and electrolyte to the external circuit, converting the sunlight into an electrical current. A material that could be useful for DSSCs is the nanoscale cupric oxide, which can act as a p-type semiconductor and has interesting properties such as low thermal emittance and relatively good electrical properties. The goal of this project was to synthesize and characterize CuO nanoparticles using three different methods and look into each products potential use and efficiency in DSSCs. The particles were synthesized using two different solution based chemical precipitation methods and a flame spray pyrolysis method, yielding nanostructures with different compositions, structures and sizes ranging from ~20 to 1000 nm. The nanoparticle powder synthesized by the flame spray pyrolysis route was tested as semiconductor layer in the working electrode of the DSSC. Current-voltage measurements presented low solar conversion efficiencies with a reversed current, meaning that the cupric oxide cells did not work in a desirable way. Further studies of the cupric oxide synthesis and its suitability in DSSCs are needed to increases the future possibilities for gaining well working p-type DSSCs with higher efficiencies.
|
Page generated in 0.0508 seconds