• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some vanishing theorems on non-compact complex spaces.

January 1980 (has links)
by Cheung Wing Sum. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1980. / Bibliography: leaves 94-98.
2

Die Homologie der Modulräume berandeter Riemannscher Flächen von kleinem Geschlecht

Ehrenfried, Ralf, January 1998 (has links)
Thesis (doctoral)--Bonn, 1997. / Vita. Includes bibliographical references (p. 167-168).
3

Model theory of holomorphic functions

Braun, H. T. F. January 2004 (has links)
This thesis is concerned with a conjecture of Zilber: that the complex field expanded with the exponential function should be `quasi-minimal'; that is, all its definable subsets should be countable or have countable complement. Our purpose is to study the geometry of this structure and other expansions by holomorphic functions of the complex field without having first to settle any number-theoretic problems, by treating all countable sets on an equal footing. We present axioms, modelled on those for a Zariski geometry, defining a non-first-order class of ``quasi-Zariski'' structures endowed with a dimension theory and a topology in which all countable sets are of dimension zero. We derive a quantifier elimination theorem, implying that members of the class are quasi-minimal. We look for analytic structures in this class. To an expansion of the complex field by entire holomorphic functions $\mathcal{R}$ we associate a sheaf $\mathcal{O}^{\scriptscriptstyle{\mathcal{R}}}$ of analytic germs which is closed under application of the implicit function theorem. We prove that $\mathcal{O}^{\scriptscriptstyle{\mathcal{R}}}$ is also closed under partial differentiation and that it admits Weierstrass preparation. The sheaf defines a subclass of the analytic sets which we call $\mathcal{R}$-analytic. We develop analytic geometry for this class proving a Nullstellensatz and other classical properties. We isolate a condition on the asymptotes of the varieties of certain functions in $\mathcal{R}$. If this condition is satisfied then the $\mathcal{R}$-analytic sets induce a quasi-Zariski structure under countable union. In the motivating case of the complex exponential we prove a low-dimensional case of the condition, towards the original conjecture.
4

Analyticity spaces, trajectory spaces, and linear mappings between them

Eijndhoven, S. J. L. van January 1983 (has links)
Thesis (doctoral)--Technische Hogeschool Eindhoven, 1983. / Text in English ; summary and vita in Dutch. Includes indexes. Vita. Includes bibliographical references (p. 190-193).

Page generated in 0.0701 seconds