11 |
Prostate cancer circulating tumor cells: automated and manual enumeration after isolation via size-based filtration of pre-treatment patient samples.Alsaadi, Hazem 05 October 2016 (has links)
CTCs have emerged as a potential source of clinical significance. But with numerous isolating systems currently available, the numbers of captured CTCs vary widely. At this point, CellSearch remains the only FDA-approved system with clinical significance whereby the results could be used to monitor patients with metastatic colon, breast, or prostate cancer. However, its inability to isolate CTCs from non-high risk prostate cancer patients or CTCs that are EpCAM-negative has led to criticism. In this study, we have shown that size-based filtration successfully isolates CTCs from patients with localized and metastatic prostate cancer. We have also shown that CTCs can be successfully isolated from low and intermediate risk groups. Additionally, clusters of CTCs were preserved and isolated in all localized risk groups and metastatic patients. Furthermore, we enumerated the isolated CTCs using automated and manual methods in low risk, intermediate risk, high risk, and metastatic prostate cancer. The automated and manual counts were comparable. Moreover, the amounts of clusters and the size of clusters correlated with the status and stage of prostate cancer. / October 2016
|
12 |
Targeting Histone Deacetylases in Advanced Prostate CancerBrunner, Abigail Maria January 2015 (has links)
<p>The androgen receptor (AR) signaling axis is a well-established therapeutic target in prostate cancer, due to its central role in tumor maintenance and progression. Although patients respond initially to androgen deprivation therapies and AR antagonists, they invariably progress to a castration-resistant state. Consequently, there is an unmet need for agents that target the AR signaling axis in a unique manner. </p><p>Histone deacetylase (HDAC) inhibitors repress AR signaling and prostate cancer growth in cellular and xenograft models. However, HDAC inhibitors also induce epithelial to mesenchymal (EMT) and neuroendocrine differentiation, both of which are associated with prostate cancer progression and aggressiveness. Given that 18 different HDAC isoforms have been identified in humans, and non-selective or Class I (HDAC1, 2, 3, and 8) HDAC inhibitors have been used in most of these studies, the relative contribution of individual HDAC isoforms to AR transcriptional activity and prostate cancer pathophysiology remains to be elucidated. The overarching goals of this study were to (1) determine the role of individual Class I HDACs in AR transcriptional activity and prostate cancer growth, (2) identify selective HDAC inhibitors that have reduced adverse profiles to the treatment of prostate cancer, and (3) identify potential HDAC-interacting proteins that regulate AR target gene transcription and prostate cancer growth. </p><p>Using genetic knockdown studies and pharmacological inhibitors with isoform selectivity, we identified that HDAC3 was required for AR transcriptional activity and proliferation in cellular models of androgen-sensitive and castration-resistant prostate cancer (CRPC). Additionally, we found that RGFP966, an HDAC3-selective inhibitor, attenuated the growth of a xenograft model of CRPC. Furthermore, non-selective HDAC inhibitors induced EMT and neuroendocrine markers in prostate cancer cells, but RGFP966 treatment did not. These studies provide rationale for selective inhibition of HDAC3 for the treatment of CRPC, and could provide an explanation for the lack of success using non-selective HDAC inhibitors in clinical trials for prostate cancer.</p><p>We also assessed the role of REV-ERB alpha, an HDAC3-interacting protein, in the regulation of AR transcriptional activity and prostate cancer growth. Using siRNA knockdown studies, REV-ERB inhibitors, and overexpression studies, we concluded that REV-ERB alpha; was required for AR target gene induction and prostate cancer growth, including models of CRPC. These studies also provide rational for targeting REV-ERB alpha; for the treatment of CRPC.</p><p>Taken together, these studies identify two novel targets in the HDAC signaling axis for the treatment of prostate cancer: HDAC3 and REV-ERB alpha. Our studies provide greater insight into AR transcriptional regulation and prostate cancer pathophysiology.</p> / Dissertation
|
13 |
Targeting and repair of adult testicular somatic cells through viral gene therapyDarbey, Annalucia Leigh January 2018 (has links)
Androgens are essential for the maintenance of male health and wellbeing. A disturbance in androgen signalling has been associated with a number of clinically relevant disorders such as cardiovascular disease, diabetes and metabolic disorders as well as infertility. Primarily produced in the testis in males, the actions of androgens are mediated through binding to androgen receptor (AR), a member of the nuclear receptor superfamily of ligand-activated transcription factors. The somatic cells of the testis are known to have a number of key roles in both testis function and development and the Sertoli, Leydig and Peritubular Myoid cells are known to express AR in adulthood. It is through AR that some testicular functions are mediated; for example, the Sertoli cells support of complete spermatogenesis with Sertoli cell androgen receptor knockout (SCARKO) testis demonstrating a halt of spermatogenesis before meiosis. However, how androgen signalling is impacting testicular function through each of the somatic cell types is not yet fully understood. Currently, treatments for male reproductive disorders such as hypogonadism (low androgens) and infertility are limited to treatment of the symptoms; using androgen replacement therapy and in vitro fertilisation techniques. This has been, up until recently, a result of a lack of understanding of the causes of these conditions and a lack of resources able to treat them, with research suggesting that a genetic component may be responsible in a number of cases. However, due to the limited genetic investigation diagnosis of men with male reproductive disorders, the wider understanding of the genetics underpinning male hypogonadism and infertility is incomplete. Developments in technology for the investigation and editing of the genetic code are triggering a surge in the exploration of genetic disorders and, in parallel, into the fields of gene delivery vectors and editing technologies. These technologies will allow an expansion into the knowledge and understanding of genetic disorders whilst simultaneously affording the opportunity to exploit this understanding for the development of therapeutics. There have been a small handful of previous studies using technologies such as viral vectors to target the testicular somatic cells and deliver exogenous transgenes with the purpose of both gene editing and repair, all with varying degrees of success. Here, techniques to introduce and target the Leydig and Sertoli cells were investigated to determine the most appropriate methodology for gene delivery to and manipulation of the testis. Refinement of injections into the interstitial compartment were carried out before introducing lentiviral vectors and targeting of Leydig cells was validated and optimised. Lentiviral vectors are able to permanently integrate into the host cell. Surprisingly, analysis of testis post lentiviral injection determined that the lentiviral targeted Leydig cells began to undergo apoptosis one week post injection and were subsequently cleared from the testis after ten days. Contrastingly, this was not the case when adenoviral vectors were introduced into the interstitial compartment, with Leydig cells continuing to express the delivered reporter transgene and, importantly, not expressing markers of apoptosis, ten days post injection. This would suggest that using adenoviral vectors to target the Leydig cell population in the adult testis would be more appropriate than using lentiviral vectors. Previous studies have successfully used lentiviral vectors to target the Sertoli cells in the adult testis via the introduction of the particles through the efferent duct. However, this can result in damage to efferent duct, resulting in blockages and subsequently the seminiferous tubules. To circumvent this, introduction of the lentiviral particles through the rete compartment of the testis at a range of lower injection pressures was examined and injecting at a lower pressure through the rete testis was found to reduce the likelihood of introducing negative impacts on testicular histology when targeting the seminiferous tubules. Using these refined methods of introducing lentiviral vectors, targeted Sertoli cells stably expressed the delivered transgene for up to one year post injection. Using viral vector delivered transgenes for both the investigation of testicular genetic disorders and for the development of therapeutics has great potential. To explore this potential, we first generated a mouse model in which AR was ablated from both the Leydig and Sertoli cells using Cre/LoxP technology, termed the SC-LC-ARKO. Alongside providing a potential model to 'repair' with viral vectors, the SC-LC-ARKO model also provided an additional model for comparison with other models exhibiting ablation of AR from both single somatic cell types and double somatic cell types. This further enabled a characterisation of the roles of AR in adult testicular function, with results suggesting that loss of AR from more than one cell type results in an additive phenotype when compared to single cell knock outs. Despite providing further insight into the roles of AR in the testis, further analysis of the Cre line used to generate the SC-LC-ARKO model indicated that a small number of Leydig cells were expressing the Cre recombinase, resulting in only a small population of Leydig cells with ablated AR. Considering this, to explore the potential of rescuing Sertoli cell AR using lentiviral vectors, we then utilised an already well characterised Sertoli Cell AR knockout (SCARKO) model. Lentiviral vectors expressing mouse AR and monomeric GFP (moeGFP) downstream of a CMV promoter were generated and injected into the rete testis of WT and SCARKO adult (day 100) males at low pressure. The contralateral testis was injected with a lentiviral vector expressing moeGFP alone (also downstream of a CMV promoter) using the same technique. Analysis of testis sections revealed a reintroduction of AR to Sertoli cells in 100% of SCARKO testis injected with lentivirus expressing mouse AR. As a result of this re-expression of AR in Sertoli cells, 66% of the testis injected with lentivirus expressing mouse AR had evidence of morphologically mature elongated spermatids, indicative of ongoing spermatogenesis. These results suggest that a rescue of the infertility phenotype reported in previous studies of SCARKO testis. Also demonstrated is the reversal of the SCARKO testicular phenotype in tubules targeted by the mAR expressing lentiviral vector. This suggests that absence Sertoli cell AR throughout development does not have a permanent impact on the Sertoli cells capacity to support spermatogenesis in adulthood following rescue of SC AR expression in adulthood. In summary, the results of these studies have provided a refinement in the methodologies for targeting the Sertoli and Leydig cells of the adult testis with viral vectors as well as demonstrating successful rescue of a previously reported mouse model exhibiting infertility through reintroduction of a functional gene. Alongside this, comparisons of AR knockout models have afforded insight into maintenance of testis function through AR.
|
14 |
Crosstalk between signaling pathways in hormonal progression of prostate cancerWang, Gang 05 1900 (has links)
As the most frequently diagnosed cancer in North American men, prostate cancer can progress to the androgen independent stage after initial response to androgen ablation therapy. The molecular mechanisms involved in the hormonal progression of prostate cancer are not completely understood. Here, we analyze changes in the transcriptome of prostate cancer cells at different stages of progression to reveal potential mechanisms.
Applying Affymetrix GeneChip technology, we identified the transcriptomes in response to stimulation of androgen and PKA pathways in human prostate cancer cells. In addition to PSA, other common target genes were identified. Genes differentially expressed in response to androgen and stimulation of the PKA pathway in vitro were also differentially expressed during hormonal progression in vivo.
Upon androgen stimulation, androgen receptor binds to a functional androgen response element within the promoter region of SESN1, a p53 targeted gene, and represses its expression. The expression of SESN1 was induced by castration in LNCaP xenografts, but the expression was eventually suppressed again in the androgen independent stage of prostate cancer. Knockdown of SESN1 promoted the proliferation of prostate cancer cells.
Expression patterns of androgen-regulated genes in androgen independent tumours were revealed to be more similar to that from before castration than to the tumors under androgen ablation. The β-catenin, a potent coactivator of the androgen receptor, and Wnt pathway was deregulated in androgen-independent tumours. There was increased nuclear colocalization and interaction of androgen receptor and β-catenin with hormonal progression of prostate cancer.
This study provides insight into hormonal effects on prostate cancer and possible pathways involved in the development of androgen independent disease, as well as potential therapeutic targets.
|
15 |
The effect of cyclin G associated kinase on androgen receptor function and prostate cancer progressionEmsley-Leik, Kimberley Louise 05 1900 (has links)
The mechanism by which prostate cancer progresses from androgen dependence (AD) to androgen independence/castration resistance (AI/CR) is currently a major focus of prostate cancer-related research. Prostate cancers that progress to a state of AI/CR are typically resistant to most standard types of treatments. Due to its primary role in driving normal prostate cell growth and proliferation, the androgen receptor (AR) is believed to play a key role in progression. Coregulators, or any proteins which may either enhance or abrogate AR activity, are considered to be one of the potential mechanisms by which AR function may become impaired. Cyclin G-associated kinase (GAK) was initially identified as a potential coregulator of AR in a Tup 1 repressed transactivation system. A LNCaP cDNA library was screened for proteins which interacted with the NH2-terminus of AR. GAK was isolated from three independent library clones using two different AR baits (AR 1-549 and AR 1-646). This interaction was confirmed via GST pulldown and coimmunoprecipitation experiments, and preliminary luciferase assays suggested that GAK activates AR in a hormone dependent manner.
In this study, my objectives were to validate GAK’s role as a coregulator of AR and to determine if overexpressing GAK affects progression to AI. In vitro luciferase assays whereby GAK was either overexpressed or knocked down in both LNCaP and PC3 cells did not significantly affect AR activity. Xenograft experiments utilizing a doxycycline (DOX) inducible lentiviral LNCaP-GAK overexpressing stable cell line demonstrated that while GAK may not play a significant role in modulating AR activity, it may adopt a more subtle role enhancing tumour take and tumour volume growth rate in vivo. While these results could not confirm GAK to be a direct coregulator of AR, it is entirely possible that GAK may influence prostate cancer progression, albeit indirectly. Recent publications report a growing amount of evidence suggesting GAK’s involvement in the critical cellular process of clathrin coated vesicle endocytosis, the dysregulation of which could potentially indirectly affect AR regulated genes.
|
16 |
Development of chemotherapies for hormone-dependent breast and prostate cancersMorrow, Michael Derek 17 February 2005 (has links)
Cancer is a leading cause of human mortality worldwide, and is expected to soon become the overall leading cause of death in the United States. Some cancers are hormone-related, including the sex-specific cancers of the breast (predominantly in women) and prostate (in men). In both cases, early stage tumors are responsive to inhibitory endocrine-based therapies. However, both cancers progress to hormone-nonresponsive states and this is in part due to altered properties of the primary nuclear hormone receptor signaling pathway (estrogen receptor [ER] in breast; androgen receptor [AR] in prostate). Other nuclear receptors are thus being investigated as therapeutic targets due to their crosstalk with hormone receptor pathways and these include the aryl hydrocarbon receptor (AhR), peroxisome proliferator activated receptor γ(PPARγ, retinoic acid receptor and retinoid X receptor (RAR/RXR), and vitamin D receptor (VDR). Previous studies have demonstrated that the AhR mediates chemoprotective, antiestrogenic, and tumoristatic effects in experimental models, and relatively non-toxic selective aryl hydrocarbon receptor modulators (SAhRMs) have been developed. Studies in this dissertation have investigated the therapeutic properties of a new class of compounds related to the SAhRM 3,3‘-diindolylmethane (DIM) in models of breast cancer. Additionally, the potential therapeutic role of the AhR in human prostate cancer cells has been investigated. Several ring- and methylene-substituted DIMs exhibited antiestrogenic and tumoristatic activities in breast cancer cells and in carcinogen-induced rat mammary tumors. At least some of the methylene-substituted DIMs act through PPARγ. The AhR is expressed in LNCaP and iv
22Rv1 prostate cancer cells and AhR agonists inhibit cell growth and AR-induced transactivation through pathways independent of androgen receptor downregulation.
|
17 |
Integrated Chromatin Analyses Offer Insights Into Trans-factor Function In Cancer Cell LinesTewari, Alok January 2012 (has links)
<p>Understanding the mechanisms whereby the sequence of the human genome is interpreted into diverse cellular phenotypes is a critical endeavor in modern biology. A major determinant of cellular phenotype is the spatial and temporal pattern gene expression, which is regulated in part by epigenomic properties such as histone post-translational modifications, DNA methylation, chromatin accessibility and the 3-dimensional architecture of the genome within the nucleus. These properties regulate the dynamic assembly of transcription factors and their co-regulatory proteins upon chromatin. To properly understand the interplay between the epigenomic framework of a cell and transcription factors, integrated analysis of transcription factor-DNA binding, chromatin status, and transcription is required. This work integrates information about chromatin accessibility, as measured by DNaseI hypersensitivity, transcription factor binding, as measured by chromatin immunoprecipitation, and transcription, as measured by microarray or transcriptome sequencing, to further understand the functional role of two important transcription factors, the androgen receptor (AR) and CTCF, in cancer cell line models. Data gathered from a prostate cancer cell line model demonstrate that the AR does not exclusively bind accessible chromatin upon ligand-activation, and induces significant changes in chromatin accessibility upon binding. Regions of quantitative change in chromatin accessibility contain motifs corresponding to potential collaborators for AR function, and are also significantly associated with AR-regulated transcriptional changes. Furthermore, base pair resolution of the DNaseI cleavage profile revealed three distinct patterns of AR-DNA interaction, suggesting multiple modes of AR interacting with the genome. A novel role for the nuclear receptor REV-ERBα in AR-mediated transcription was explored within the same model system. Though preliminary, results thus far indicate that REV-ERBα is required for AR-induced increases in target gene transcription in a manner that is likely dependent on HDAC3. Genetic knockdown of REV-ERBα resulted in notable changes in chromatin accessibility around AR-target genes both before and after AR activation. The function of CTCF was interrogated using stable knockdown in a breast cancer cell line model. CTCF knockdown led to widespread changes in chromatin accessibility that were dependent on DNA sequence. Further analysis suggested that AP-1 and FOXA1 are involved in CTCF function. Together, the work presented in this dissertation offers novel insight into the behavior of two critical transcription factors in cancer cell lines, and describe a framework of analysis that can be extended and applied to any transcription factor within any desired cellular context.</p> / Dissertation
|
18 |
Crosstalk between signaling pathways in hormonal progression of prostate cancerWang, Gang 05 1900 (has links)
As the most frequently diagnosed cancer in North American men, prostate cancer can progress to the androgen independent stage after initial response to androgen ablation therapy. The molecular mechanisms involved in the hormonal progression of prostate cancer are not completely understood. Here, we analyze changes in the transcriptome of prostate cancer cells at different stages of progression to reveal potential mechanisms.
Applying Affymetrix GeneChip technology, we identified the transcriptomes in response to stimulation of androgen and PKA pathways in human prostate cancer cells. In addition to PSA, other common target genes were identified. Genes differentially expressed in response to androgen and stimulation of the PKA pathway in vitro were also differentially expressed during hormonal progression in vivo.
Upon androgen stimulation, androgen receptor binds to a functional androgen response element within the promoter region of SESN1, a p53 targeted gene, and represses its expression. The expression of SESN1 was induced by castration in LNCaP xenografts, but the expression was eventually suppressed again in the androgen independent stage of prostate cancer. Knockdown of SESN1 promoted the proliferation of prostate cancer cells.
Expression patterns of androgen-regulated genes in androgen independent tumours were revealed to be more similar to that from before castration than to the tumors under androgen ablation. The β-catenin, a potent coactivator of the androgen receptor, and Wnt pathway was deregulated in androgen-independent tumours. There was increased nuclear colocalization and interaction of androgen receptor and β-catenin with hormonal progression of prostate cancer.
This study provides insight into hormonal effects on prostate cancer and possible pathways involved in the development of androgen independent disease, as well as potential therapeutic targets.
|
19 |
The effect of cyclin G associated kinase on androgen receptor function and prostate cancer progressionEmsley-Leik, Kimberley Louise 05 1900 (has links)
The mechanism by which prostate cancer progresses from androgen dependence (AD) to androgen independence/castration resistance (AI/CR) is currently a major focus of prostate cancer-related research. Prostate cancers that progress to a state of AI/CR are typically resistant to most standard types of treatments. Due to its primary role in driving normal prostate cell growth and proliferation, the androgen receptor (AR) is believed to play a key role in progression. Coregulators, or any proteins which may either enhance or abrogate AR activity, are considered to be one of the potential mechanisms by which AR function may become impaired. Cyclin G-associated kinase (GAK) was initially identified as a potential coregulator of AR in a Tup 1 repressed transactivation system. A LNCaP cDNA library was screened for proteins which interacted with the NH2-terminus of AR. GAK was isolated from three independent library clones using two different AR baits (AR 1-549 and AR 1-646). This interaction was confirmed via GST pulldown and coimmunoprecipitation experiments, and preliminary luciferase assays suggested that GAK activates AR in a hormone dependent manner.
In this study, my objectives were to validate GAK’s role as a coregulator of AR and to determine if overexpressing GAK affects progression to AI. In vitro luciferase assays whereby GAK was either overexpressed or knocked down in both LNCaP and PC3 cells did not significantly affect AR activity. Xenograft experiments utilizing a doxycycline (DOX) inducible lentiviral LNCaP-GAK overexpressing stable cell line demonstrated that while GAK may not play a significant role in modulating AR activity, it may adopt a more subtle role enhancing tumour take and tumour volume growth rate in vivo. While these results could not confirm GAK to be a direct coregulator of AR, it is entirely possible that GAK may influence prostate cancer progression, albeit indirectly. Recent publications report a growing amount of evidence suggesting GAK’s involvement in the critical cellular process of clathrin coated vesicle endocytosis, the dysregulation of which could potentially indirectly affect AR regulated genes.
|
20 |
Crosstalk between signaling pathways in hormonal progression of prostate cancerWang, Gang 05 1900 (has links)
As the most frequently diagnosed cancer in North American men, prostate cancer can progress to the androgen independent stage after initial response to androgen ablation therapy. The molecular mechanisms involved in the hormonal progression of prostate cancer are not completely understood. Here, we analyze changes in the transcriptome of prostate cancer cells at different stages of progression to reveal potential mechanisms.
Applying Affymetrix GeneChip technology, we identified the transcriptomes in response to stimulation of androgen and PKA pathways in human prostate cancer cells. In addition to PSA, other common target genes were identified. Genes differentially expressed in response to androgen and stimulation of the PKA pathway in vitro were also differentially expressed during hormonal progression in vivo.
Upon androgen stimulation, androgen receptor binds to a functional androgen response element within the promoter region of SESN1, a p53 targeted gene, and represses its expression. The expression of SESN1 was induced by castration in LNCaP xenografts, but the expression was eventually suppressed again in the androgen independent stage of prostate cancer. Knockdown of SESN1 promoted the proliferation of prostate cancer cells.
Expression patterns of androgen-regulated genes in androgen independent tumours were revealed to be more similar to that from before castration than to the tumors under androgen ablation. The β-catenin, a potent coactivator of the androgen receptor, and Wnt pathway was deregulated in androgen-independent tumours. There was increased nuclear colocalization and interaction of androgen receptor and β-catenin with hormonal progression of prostate cancer.
This study provides insight into hormonal effects on prostate cancer and possible pathways involved in the development of androgen independent disease, as well as potential therapeutic targets. / Medicine, Faculty of / Pathology and Laboratory Medicine, Department of / Graduate
|
Page generated in 0.1025 seconds