• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude par émission acoustique et dilatométrie d'électrodes à base de silicium pour batteries Li-ion / Acoustic emission and dilatometry study of silicon based electrodes for Li-ion batteries

Tranchot, Alix 19 October 2016 (has links)
Afin d’augmenter la densité d’énergie des batteries Li-ion, en particulier pour le marché des véhicules électriques, il est nécessaire de développer des matériaux d’électrode plus performants. Le silicium, dont la capacité spécifique (3579mAh/g) est dix fois supérieure à celle du graphite, est un matériau particulièrement prometteur. Néanmoins, lors de sa lithiation, il subit une forte expansion volumique (280% contre 10% pour le graphite) conduisant à la décrépitation des particules de Si et à la fissuration/décohésion de l’électrode. Il en résulte une diminution notable de la durée de vie de l’anode. Pour améliorer la tenue au cyclage des électrodes, il est nécessaire de bien comprendre/quantifier leur dégradation morphologique, ce que permettent difficilement des analyses post mortem conventionnelles. Notre objectif est d’utiliser et de développer des outils permettant d'étudier in operando la dégradation de ces électrodes. Nous avons mis en œuvre des protocoles de caractérisation in operando couplant des mesures électrochimiques à l’émission acoustique d’une part et à la dilatométrie d’autre part. Le suivi de l’activité acoustique au cours du cyclage de l’électrode a montré que les particules de Si micrométrique constituant cette électrode se fracturent dès le début de la lithiation, et que la fissuration de l’électrode se produit progressivement tout au long de la 1ère lithiation. Peu d’activité acoustique est détectée par la suite. Par l’analyse des signaux acoustiques, trois types de signaux ont été identifiés, se différenciant principalement selon leur fréquence de pic. Les signaux de hautes fréquences sont associés principalement aux micro-fractures des particules en début de lithiation, et les signaux à moyennes et basses fréquences sont respectivement attribuées à la fissuration de l’électrode et aux macro-fractures des particules de Si en fin de lithiation. L’étude dilatométrique a montré une expansion volumique maximale de ~170% avec une encre tamponnée à pH3 versus 300% si l’électrode est préparée à pH7. Cette différence s’explique par la formation de liaisons cohésives entre le liant CMC et les particules de Si lorsque l’électrode est préparée à pH 3, améliorant sa résistance mécanique. Ce qui a été confirmé par des mesures d’indentation. Ainsi, l’électrode formulée à pH 3 montre une meilleure cyclabilité. Enfin, nous avons démontré qu’une diminution notable de la durée de vie de l’électrode est observée lorsque la taille initiale des particules de Si est réduite de 230 à 85nm. Nous expliquons ce résultat inattendu par une quantité insuffisante de CMC par rapport à la surface spécifique plus élevée des particules de taille plus faible. De fait, sa résistance mécanique est insuffisante et conduit à une fissuration et une exfoliation importantes de l’électrode. Ceci est appuyé par les mesures de dilatométrie, d’émission acoustique et des observations MEB. / To increase the energy density of Li-ion batteries, especially for the electric vehicle market, the development of new electrode materials is required. Silicon is a particularly interesting material, thanks to its high specific capacity (3579mAh/g, ten times higher than the capacity of graphite). Nevertheless, upon lithiation, silicon undergoes an important expansion (300% vs 10% for graphite). This leads to the cracking of the Si particles and fracturing of the electrode film. These induces electrical disconnections upon cycling, resulting in a poor cycle life. To improve the cyclability of the Si based electrodes, it is important to better understand/quantify their mechanical degradation. Conventional post mortem analyses are insufficient for that purpose. The objective of this work is to develop and use in operando analyses techniques. Therefore, we established protocols to characterize composite electrodes by electrochemical measurements coupled with either acoustic emission (AE) or dilatometry measurements. The evolution of the acoustic activity upon cycling showed that the cracking of the micrometric Si particles and of the composite film mainly occurs during the first cycle and is initiated in the early stage of the lithiation. Very few AE signals are detected in the following cycles. The signal analysis leads to the identification of three types of signals depending to their peak frequency. High frequency signals were associated with surface micro-cracking of the Si particles at the beginning of lithiation. Medium and low frequency signals were respectively attributed to the fracturing of the electrode film and bulk macro-cracking of the Si particles at the end of lithiation. An electrode thickness expansion of 170% was measured by electrochemical dilatometry for our electrodes prepared at pH3 versus 300% for electrodes prepared at pH7. The different mechanical behavior is explained by the formation of covalent bonds between the CMC binder and Si particles at pH3, which increases the mechanical stability of electrodes. This was confirmed by the measurement of their hardness and Young’s modulus. Therefore, pH3 electrodes display a higher capacity retention. It was also demonstrated that a decrease of the Si particle size does not necessarily lead to an improvement of the electrode cycle life. Indeed, we observed a significant decrease of the electrode cycle life when the Si particle size is decreased from 230 to 85 nm. This can be explained by a lack of CMC binder in relation with the higher surface area of the smaller Si particles, leading to a lower mechanical resistance of the electrode film. Within the first cycles, Si 85 nm based electrodes suffer from important cracking and exfoliation. This was confirmed by in operando dilatometry and acoustic measurements, and post mortem SEM observations.
2

Étude par tomographie RX d'anodes à base de silicium pour batteries Li-ion / X-ray tomography study of silicon-based anodes for Li-ion batteries

Vanpeene, Victor 22 March 2019 (has links)
De par sa capacité spécifique théorique dix fois plus élevée que celle du graphite actuellement utilisé comme matériau actif d'anode pour les batteries Li-ion, le silicium peut jouer un rôle important dans l'augmentation de la densité d'énergie de ces systèmes. La réaction d'alliage mise en place lors de sa lithiation se traduit cependant par une forte expansion volumique du silicium (~300 % contre seulement ~10 % pour le graphite), conduisant à la dégradation structurale de l'électrode, affectant notablement sa tenue au cyclage. Comprendre en détail ces phénomènes de dégradation et développer des stratégies pour limiter leur impact sur le fonctionnement de l'électrode présentent un intérêt indéniable pour la communauté scientifique du domaine. L'objectif de ces travaux de thèse était en premier lieu de développer une technique de caractérisation adaptée à l'observation de ces phénomènes de dégradation et d'en tirer les informations nécessaires pour optimiser la formulation des anodes à base de silicium. Dans ce contexte, nous avons utilisé la tomographie aux rayons X qui présente l'avantage d'être une technique analytique non-destructive permettant le suivi in situ et en 3D des variations morphologiques s'opérant au sein de l'électrode lors de son fonctionnement. Cette technique a pu être adaptée à l'étude de cas du silicium en ajustant les volumes d'électrodes analysés, la résolution spatiale et la résolution temporelle aux phénomènes à observer. Des procédures de traitement d'images adéquates ont été appliquées afin d'extraire de ces analyses tomographiques un maximum d'informations qualitatives et quantitatives pertinentes sur leur variation morphologique. De plus, cette technique a pu être couplée à la diffraction des rayons X afin de compléter la compréhension de ces phénomènes. Nous avons ainsi montré que l'utilisation d'un collecteur de courant 3D structurant en papier carbone permet d'atténuer les déformations morphologiques d'une anode de Si et d'augmenter leur réversibilité en comparaison avec un collecteur de courant conventionnel de géométrie plane en cuivre. Nous avons aussi montré que l'utilisation de nanoplaquettes de graphène comme additif conducteur en remplacement du noir de carbone permet de former un réseau conducteur plus à même de supporter les variations volumiques importantes du silicium. Enfin, la tomographie RX a permis d'étudier de façon dynamique et quantitative la fissuration et la délamination d'une électrode de Si déposée sur un collecteur de cuivre. Nous avons ainsi mis en évidence l'impact notable d'un procédé de "maturation" de l'électrode pour minimiser ces phénomènes délétères de fissuration-délamination de l'électrode. / Because of its theoretical specific capacity ten times higher than that of graphite currently used as active anode material for Li-ion batteries, silicon can play an important role in increasing the energy density of these systems. However, the alloying reaction set up during its lithiation results in a high volume expansion of silicon (~300% compared with only ~10% for graphite) leading to the structural degradation of the electrode, which is significantly affecting its cycling behavior. Understanding in detail these phenomena of degradation and developing strategies to limit their impact on the functioning of the electrode are of undeniable interest for the scientific community of the field. The objective of this thesis work was first to develop a characterization technique adapted to the observation of these degradation phenomena and to draw the necessary information to optimize the formulation of silicon-based anodes. In this context, we have used X-ray tomography which has the advantage of being a non-destructive analytical technique allowing in situ and 3D monitoring of the morphological variations occurring within the electrode during its operation. This technique has been adapted to the case study of silicon by adjusting the analyzed electrode volumes, the spatial resolution and the temporal resolution to the phenomena to be observed. Appropriate image processing procedures were applied to extract from these tomographic analyzes as much qualitative and quantitative information as possible on their morphological variation. In addition, this technique could be coupled to X-ray diffraction to complete the understanding of these phenomena. We have shown that the use of a carbon paper structuring 3D current collector makes it possible to attenuate the morphological deformations of an Si anode and to increase their reversibility in comparison with a conventional copper current collector of plane geometry. We have also shown that the use of graphene nanoplatelets as a conductive additive to replace carbon black can form a conductive network more able to withstand the large volume variations of silicon. Finally, the X-ray tomography allowed studying dynamically and quantitatively the cracking and delamination of an Si electrode deposited on a copper collector. We have thus demonstrated the significant impact of a process of "maturation" of the electrode to minimize these deleterious phenomena of cracking-delamination of the electrode.

Page generated in 0.0438 seconds